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1. Introduction

This report describes a general-purpose Requirements Specification Language, RSL. The

purpose of RSL is to specify precisely the external structure of a mechanized system and to

define requirements that the system must meet. A system can be comprised of a mixture of

hardware, software, and human processing elements.

RSL is a hybrid of features found in several popular requirements specification languages,

such as SADT (Structured Analysis and Design Technique [Ross 77]), PSL (Problem Statement

Language [Teichroew 77]), and RMF (Requirements Modeling Framework [Greenspan 82]).

While languages such as these have useful features for structuring a specification, they generally

lack formality. To overcome the deficiencies of informal requirements languages, RSL has con-
structs for formal mathematical specification. These constructs are similar to those found in for-

mal specification languages such as EHDM (Enhanced Hierarchical Development Methodology

[Rushby 91]), Larch [Guttag 85], and OBJ3 [Goguen 88]. The formal features of RSL need not

be used in all situations. A requirements specification can be constructed in a number of levels

from informal, to semi-formal, to fully formal. Examples to follow will illustrate these levels.

The reader of this report is assumed to be familiar with concepts of computer programming,

as well as concepts of discrete mathematics. No familiarity with the requirements analysis or

formal specification is assumed. While the report is primarily a reference manual for the RSL

language, it does include tutorial discussion and examples on the concepts of requirements

specification.

1.1. The Overall Structure of a Requirements Specification

In RSL, a requirements specification consists of two parts: an object-oriented specification,

and an operation-oriented specification. Dividing a specification into these two parts promotes

the concept of multiple system views. One view focuses on the system from the perspective of

the data objects, the other from the perspective of the functional operations. Neither view is the

correct one -- they both convey the same meaning in different ways. Depending on the natural

orientation of the system being specified, one form of view may be the more natural.

Specifically, for so-called "transaction-oriented" systems, the object-oriented view is typically
more natural. Conversely, for "transform-oriented" systems, the operation-oriented view is typi-

cally the more natural.

A transaction-oriented system is characterized by a large object on which relatively small,

incremental operations are performed. A database management system (DBMS) is a good

example of a transaction-oriented system. In a DBMS, a typically large database object is incre-

mentally modified by relatively small operations to add, delete, and search for database entries.

The DBMS operations are often referred to as transactions, and hence the system is referred to as
transaction-oriented.

A transform-oriented system is characterized by relatively large operations that perform

major transformations on objects. A report generation system (RPGS) is a good example of a

transform-oriented system. In an RPGS, a large input object, such as a database, undergoes a

major transformation to produce a large output object -- the report. As the name suggests, a

transform-oriented system performs a major transformation on its input, such that the resulting

output is substantially different in structure from the input. This is in contrast to a transaction-

oriented system, in which the output is the result of a relatively small change to the input, and

the input and output have much the same overall structure.



Whichever is the more natural view, an RSL requirements specification should always con-

tain both. That is, if a system is primarily viewed as object-oriented, it will still contain an

operation-oriented view. Conversely, a primarily operation-oriented specification will also con-

tain an object-oriented view. In this way, the two views provide a form of cross checking on

specification consistency and completeness. Something that may have been overlooked in the

object-oriented view may arise naturally in the operation-oriented-view, and vice versa. When

complete, the pair of views provides the separate parts of a mutually consistent requirements

specification.

1.2. Underlying Principles

RSL, and similar languages such as RMF and EHDM, share a number of common underly-

ing principles. These principles include:

1. Object�Operation Model -- a specification is comprised fundamentally of two

forms of entity: objects and operations; these entities have well-defined relations
to one another.

2. Hierarchy -- the primary relation between entities of the same type is hierarchy;

that is, an entity is composed hierarchically of subentities, which may in turn be

further hierarchically decomposed.

3. Input�Output Relationships -- the primary relation between objects and operations

is input�output, specifically, operations take objects as inputs and produce objects

as outputs.

4. Attribute�Value Pairs -- in addition to relations to other entities, an entity may

have other general attributes that further describe its properties and characteris-
tics.

5. Four Composition Primitives -- when an entity is decomposed into subentities,

four composition forms axe used; the forms are:

a. and composition: an entity is composed as a heterogeneous collection of
subentities

b. or composition: an entity is composed as a selected one of a heterogeneous
collection of subentities

c. repetitive composition: an entity is composed as a homogeneous collection of
zero or more subentities

d. recursive -- an entity may contain itself as a subentity.

6. Class�Subclass�Instance Composition -- a secondary form of hierarchical relation

is that of class�instance; an entity class defines a generic entity template; an

entity subclass or instance specializes the generic class by adding additional
attributes.

7. Object�Operation Duality -- the composition and relational forms apply equally to

both objects and operations; that is, both objects and operations can be decom-

posed hierarchically, with general attribute/value pairs, and defined as classes.

8. Strong Typing -- all objects in a specification define a formal type; RSL formulas

and expressions are type checked to confirm that object names are used in type-
correct contexts.
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9. Functional Operations -- all operations are fully functional and side effect free; an

operation may only access explicit input objects, and may effect change only

through explicit output objects.

10. Declarative Specification -- a specification declares structure and function

without specifying operational details.

1.3. Defining User-Level Specifications

It is possible to use RSL to specify a system on a number of levels. The most typical use of

RSL is to define user-level specifications. Here the term user refers to the ultimate end-user of a

system being specified. Hence, a user-level specification is one in which all objects and opera-

tions are directly accessible to an end-user.

The general guideline for developing user-level specifications is that if an end-user does not

need to know about an object or operation, then that object or operation should not appear in a

specification. The purpose of this guideline is to keep an RSL specification as free as possible of

implementation detail. As a specification language, RSL should be used to define what a system

does, not how the system works.

For most systems, the dividing line between what an end-user does and does not need know

is reasonably clear. As an example, consider the specification of two different mechanized sys-
tems: an automobile and a database management system. Table 1 summarizes what objects and

operations end users should know about in these two systems.

The table illustrates the spectrum of information an end-user needs to know. It is clear that

an end-user absolutely needs to know about the basic objects and operations of the mechanized

system. These basics are the objects and operations specifically intended to be the interface
between the end-user and the system itself. In the case of an automobile system, the basics

include the doors, steering wheel, keys, etc. Basic user-level operations include starting the car,

driving it, and stopping. In a computerized DBMS there are comparable user-level objects and

operations. The objects include the database records, and the record fields such as name,
address, etc. DBMS user-level operations include adding, deleting, and searching for a record.

In addition to basic objects and operations, it is frequently necessary for end users to be

aware of certain system properties. The table shows examples of such user-level properties. For
the automobile, the user should probably be aware that the automobile uses unleaded fuel. For

the DBMS, the user should probably be aware that duplicate records cannot be entered into the

database. It is conceivable that a very naive or uninformed user could avoid knowing such pro-

perties of a system. Hence, the table indicates the user "probably" should know. At any rate, the

system specification should include these as user-level information, whether or not a user
chooses to know the information.

The next entries in the table exemplify information that the end-user probably need not

know. The example in this category for the automobile is the fact that the automobile uses spark

plugs. For the DBMS, the example is that the database uses an ISAM format (Indexed Sequen-
tial Access Method). Such information is more appropriately directed to the system maintainers

rather than end users. It is implementation-level in nature.

It might be argued that end-users should know information in the "probably not" category

on the grounds of performance. That is, an end-user may better understand how the system will

perform if certain internal details of the system are made known. However, it is more appropri-

ate that performance information be stated in terms that leave out implementation detail. For

example, specifying that the DBMS uses ISAM may indirectly help a knowledgeable end-user



Automobile Spec

Accessible objects:

doors, steering wheel,

keys. Accessible opera-
tions: start car, drive

car, stop car.

The automobile

operates on unleaded

gasoline.

The engine has spark

plugs.

A spark plug fires at
5000V.

DBMS Spec

Accessible objects: data
records, name field, ad-

dress field. Accessible

operations: add record,

delete record, find
record.

Duplicate record entries
are not allowed in the

database.

Database entries are in

ISAM format.

An ISAM record takes

32 sectors.

Does User Need

to Know About It?
ml

Absolutely.

Probably.

Probably Not.

Absolutely Not.

Table 1: Levels of what Users May Need to Know.

know which forms of query operation will be efficient and which inefficient. However, many

end-users may not understand at all what ISAM formatting means. It would be better to omit the

ISAM detail from the user-level specification altogether. The specification should rather define

operation performance properties directly in terms that all end-users can understand. For exam-

ple, searching for a record by key 1 will take less time than searching for the same record by key
2.

The last entry in the comparison table above indicates information that clearly need not be

known by an end user. Such information relates to low-level system implementation details that
end users need never be aware of.

1.4. Relationship between an RSL Specification and a Concrete User Interface

Relating an RSL specification to a concrete user interface is another means to determine

what is appropriate user-level information. Specifically, any user-level object or operation

should be directly visible in the user interface. Objects appear in the interface as any visible data

values. These include data that are displayed on a screen, in a hardcopy form, or stored in some

user-accessible data file. Operations appear in the interface as any form of user command. In

concise terms, an operation is invoked as the result of some gesture that is performed by the

user. Gestures include keyboard typing, selecting from a mouse-oriented command menu, or

pressing a function button with a mouse or other pointing device.
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RSL has also been appl/ed to a large-scale requirements specification for an advanced sub-

sonic civil transport system. This specification appears in Appendix A of [Frincke 92].

1.7. The RSL Toolset

RSL is supported by a set of tools that perform specification checking and provide brows-
ing capabilities. The three major tools are:

I. The Basic RSL Translator

2. The RSL Text Browser

3. The RSL Graphic Browser

The Basic Translator provides facilities similar to a programming language compiler -- syntax
ana]ysis, type checking, and interactive interpretation. The browsers provide two different views

of an RSL document. The Text Browser allows users to navigate through an RSL specification

using a number of menus and textual links. The Graphic Browser allows users to view support-
ing pictures that aid in the understanding of the text.

The too]s are described in full detail in a companion reference manual [Fisher 93],

2. Syntactic and Lexical Elements of RSL

Like a programming language, RSL has a formal syntax. The complete RSL syntax is

given in Appendix D. The syntactic notation is a style of BNF, as is used to define programming

language syntax. Readers unfami/iar with BNF notation should consult a text on programming
languages, or other suitable reference.

The lexical elements of RSL are similar to the lexical elements of a programming language.
RSL specifications contain identifiers chat denote the objects, operations, and other named com-

ponents of the specification. Literal values, such as numbers and strings, are used in an RSL

specification. The formal sections of a specification contain expressions that use operator gym.
_is similar to those available in a programming language. These and other lexical elements are
defined in the following subsections.

2.1. Identifiers

An RSL identifier starts with a letter, followed by zero or more letters, digits or underscore

characters, followed at the end by an optional single-quote character. Letters include both upper

and lower case letters, "A" through "Z" and "a" through "z". Digits are "0" through "9". The
underscore character is "_'. The single quote character is "'".

The intent of the trailing single quote in an identifier is to provide a pr_,e notation. For

example, if "Name" is an identifier in a specification, then "Name'" is read Name prime.

"Name" and "Name'" will typically be used in a related context. For example if "Name" is the

input to an operation, then "Name'" could be an output. Later examples illustrate typical uses of
the prime notation.

Examples of legal identifiers are the following:

Name Name' xy z XYZ obj ece 2 5 operat iort_l 5

2.2. Literal Values

Literal values in RSL are numbers, strings, booleans, and empty values. Numbers are com-

posed of one or more digits, with an optional embedded decimal point. Numbers must begin and

end with a digit. Hence, 1.0 and 0. I are legal numbers, but 1. and. 1 are not legal.
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All objects and operations should be traceable to a concrete user interface. However, this

does not mean that an RSL specification should define concrete interface details. In fact, RSL

specifications should be free of interface details. It is intended that RSL be used to define

abstract user-level specifications, for which any number of concrete interfaces may be defined.

Consider the DBMS example above. An RSL specification will define the abstract struc-

ture of the database and record objects, as well as the abstract input/output behavior of the data-

base operations. Given this abstract specification, a number of concrete interfaces could be
defined. For example, a text-command interface would define concrete names for the operations,

such as "add", "del ", "search". A typical add command could be typed in as follows:

add Name=Smith, Age=25 to DB5

This concrete command corresponds to the invocation of an abstract AddRecord operation,

where AddRecord is the operation name defined in the RSL specification.

A quite different form of window-based interface could also be defined for the same

abstract DBMS specification. In such an interface, the "add", "del", and "search" commands

could be pull-down menu selections. The equivalent of the above text command would involve

a pull-down gesture sequence to select "add" from the command menu. This would be followed

by information entry in some dialog window that would appear in response to the command
menu selection. While selecting "add" from a pull-down menu is concretely different than typ-

ing "add ..." as a text command, both concrete interface commands correspond to exactly the

same abstract operation, namely AddRecord.

An indication that a specification contains inappropriate interface detail is the appearance

of objects with names such as "CommandLineText" or "PullDownMenultems". Such objects

should not be in a specification if they refer to the details of a particular style of concrete inter-

face.

In summary, an RSL specification should be an abstract, user-oriented definition of a sys-

tem. The specification should be free of implementation detail in any form. The specification

should also be free of concrete user interface details.

1.5. Defining Specifications for Embedded Systems
A so-called embedded computer system is intended to exist within some other engineered

environment. Embedded systems are frequently characterized by little or no interaction with a

human end user. The guidance system for a autonomous vehicle is a good example. In such

systems, the preceding guidelines for user-oriented specification must be considered in a dif-

ferent light.
For embedded systems, the "users" are those external components of the surrounding

environment with which the embedded system must interface. Identification of "external" may

be somewhat more subjective in an embedded system, without the specific focus of a human

user. However, the general guideline for embedded system specification is the same as dis-

cussed above. Namely, the requirements specification should define the externally visible

objects and operations, for some appropriate definition of externality.

1.6. Suitable Application Domains

RSL is intended to be a general purpose language. As such, it is suitable for specifying the

software and/or hardware components of any computer-based system. In practice, RSL has been

used extensively in courses on Software Engineering to specify medium-scale software systems.



Su'ing-valuedliteralsaresurroundedwith doublequotecharacters.A doublequotecharac-
ter canbeembeddedwithin astringbyprecedingit with abackslashcharacter.

A booleanliteral is denotedby the standardidentifier true or false. The emptyvalue is
denotedby thestandardidentifiernil or empty.

Examplesof legalliteral valuesarethefollowing:
1 1234 1.0 123.4567 "abc ...... Say \ "h-ey \ u"

true false nil empty

2.3. Punctuation Symbols and Expression Operators

Table 2 summarizes the use of the RSL syntactic punctuation symbols. Further examples

of the use of punctuation symbols appear throughout the report.

RSL definitions contain symbolic expressions in a number of contexts. These expressions

are similar to expressions in programming languages. The legal operator symbols in RSL are the
following:

+ * _ I ( ) = ~= <> < > <= >= ?

[ ] == and & or I not => implies <=> iff

forall exists

Later sections of the report define the meanings of these symbols and provide examples of their

use in expressions.

The reader should not confuse the RSL terms "operation" and "operator". An operation is a

user-defined component of an RSL specification. An operator is a symbol used within an

expression.

As in many programming languages, some symbols in RSL are overloaded. That is, the

same symbol has two different meanings depending on the context of its use. For example, the

comma is an overloaded symbol in RSL. In some contexts it is used as a separator and in other

Symbol Usage

A semicolon separates major definitional components. For

example, each attribute of an object and operation

definition is separated by a ";". Also, object and operation

definitions themselves are separated by a ";".

A colon separates pairs of syntactic items. For example,

attribute/value pairs are separated by a ":".

A comma separates items in a list of syntactic elements.

For example, the list of operations associated with an ob-

ject is comma-separated.

Table 2: Summary of Punctuation Symbols.



contexts as an expression operator. Examples in later sections of the report illustrate the use of

all operators. The formal syntax in Appendix D defines all syntactically legal usages.

2.4. Comments

RSL comments are enclosed in two forms of bracket pairs: (* ... *) or { ... }. There is no

difference between the two forms of comments; there are two different forms for historical rea-

sons. Comments may not be nested.

2.5. RSL Keywords and Standard Identifiers

RSL keywords are distinguished words that can only be used in particular syntactic con-

texts. Keywords cannot be used as identifiers. The following are the legal RSL keywords:

and attribute ax axiom class collection components

define else equations exist exists forall func

function if iff implies in inputs outputs instance

is end list module nil not obj object of op

operation operations ops or out parts post postcond

postcondit ion postcondit ions pre precond precondition

preconditions then there var variable

RSL standard identifiers are names that have pre-defined meanings. The difference between

keywords and standard identifiers is that keywords appear in particular syntactic contexts,

whereas standard identifiers appear in the more general syntactic context of an identifier. Other

than syntactic context, there is no practical difference between keywords and standard

identifiers, since neither class of symbol can be redefined by the user. The RSL standard

identifiers are the following:

boolean empty false integer nil none real string

true description descrip picture pic

3. Objects and Operations

As noted in the introduction, the primary components of an RSL definition are objects and

operations. Objects and operations have similar forms of definition, as the following subsections
illustrate.

3.1. Defining Objects

An object is specified in a fixed format showing its components and other attributes. The

general form is as followsi:

object name is

components: composition expression defining subobjects;

operations: list of applicable operations;

equations: formal equations for operations;

[description: free-form text;,]

[other attributes: user-defined information;]
end name

The components attribute of an object defines the subobjects of which it is composed. The

1boldface terms are keywords, italic terms are variables, optional terms are enclosed in square brackets [ ... ]
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operations attribute lists all operations that construct or access the object. The equations attri-

bute defines formal algebraic equations that specify the precise meaning of the object in terms of

its operations. The description attribute is a prose description intended to convey the structure
and meaning of the object to a human reader. Other attributes can be defined by the user to help

specify an object more clearly.

The following are example object definitions: -

object PersonDatabase is

components: collection of PersonRecord;

operations: AddRecord, DeleteRecord, FindRecord, CreateDatabase;

end

description: {

A PersonDatabase

records.

);
PersonDatabase;

contains zero or more personal information

object PersonRecord is

components: Name and Age and Address;

description: {

A PersonRecord contains the information items

individual in the PersonDatabase.

);
end PersonRecord;

for an

object Name is string;

object Age is number;

object Address is string;

These examples show the basic structure of an object in terms of its components, operations, and

description. Equation definitions are an advanced topic, covered in Section 7 of the report. The
definition of other attributes is covered in Section 6.

Each object definition in a specification defines an individual type of object. In relationship

to a typed programming language, object definitions in RSL are analogous to type definitions in

a programming language. That is, each object defines a type structure for a typically infinite set
of concrete values. RSL types are more abstract than programming language types, as will be

discussed later.

3.2. Defining Operations

An operation specification is much like an object specification, in a fixed format of com-

ponents and other attributes. Here is the general form:

operation name is

components: composition expression defining suboperations ;

inputs: list of objects;]

outputs: list of objects;]

preconditions: formal predicate on inputs;]

posteonditions: formal predicate on inputs and outputs;]

[description: free-form text;,]

[other attributes: user-defined information;]
end name

For example, here are some companion operations to the earlier object examples:



operation AddRecord is

inputs: PersonDatabase, PersonRecord;

outputs: PersonDatabase;

description: {

Add a new record into a person database.

);
end AddRecord;

operation DeleteRecord is

inputs: PersonDatabase, Name;

outputs: PersonDatabase;

description: {

Delete an existing record by Name.

end DeleteRecord;

operation FindRecord is

inputs: PersonDatabase, Name, PersonRecord;

outputs: PersonRecord;

description: (

Find an existing record by Name.

};
end FindRecord;

operation CreateDatabase is

inputs: none;

outputs: PersonDatabase;

description: {

Create an initially empty person database.

);
end CreateDatabase;

3.3. Component Expressions

The components of an object or operation are defined using a composition expression.
There are four forms of composition, as outlined in the introduction of the report: and, or, repeti-

tive, and recursive. Table 3 summarizes the RSL symbols used in composition expressions. The

symbols for the same composition form are synonyms. That is, ',' and the keyword and have

exactly the same meaning. The synonymous forms exist simply for stylistic convenience.

The names that appear in a composition expression are the names of other defined entities.

Consider the following example:

object O is

components: Ol and 02 or 03;

end O ;

This definition defines an object named O, containing three other objects as its components.

Objects O1, 02, and O3 must in turn be defined in order for the specification to be complete.

The chain of subobject definitions ends with the definition of atomic objects, as will be discussed

shortly.

The precedence of composition operators from lowest to highest is: or, and, '*' Composi-

tion expressions can include parentheses, in the normal way, for grouping and changing pre-

cedence. For example,

(A or B) and (C or D) .

I0



Symbols Composition Form Examples

',', and and composition A an_l B and C
A,B,C

'l', or or composition A or B or C
AIBIC

repetitivecomposition A*

list of A

collection of A

Table 3: Summary of Component Expression Symbols.

is a legal composition expression.

While any level of parenthesis nesting is possible, it is recommended that parentheses be

used sparingly in practice. For example, consider the foLlowing definition:

object Database is

components: (Name and Addr and Age)*;

end DB ;

A better alternative is:

object Database is

components : Record* ;

end DB ;

object Record is

components: Name and Addr and Age;

end Record;

The latter alternative is clearer, and promotes reuse of the object named Record.

Each of the four composition primitives defines a particular structure. Used in combina-

tion, the composition primitives can define a wide variety of structures commonly used in

specifications. The following subsections provide further details and examples on the use of the

RSL composition forms.

3.3.1. And Composition

The and composition operator defines a heterogeneous collection of objects. In mathemati-

cal terms, an and-structure is a tuple. In relation to a programming language, an and-structure is

analogous to a record type. That is, the and operator defines an object with a fixed number of

components, where the components may be any other type of object. For example, the following

definition specifies an object with exactly three components:

object A is

components: X and Y and Z;

end A;
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The components of an and-structure are never optional. That is, each component is always

present.

3.3.2. Or Composition

The or composition operator also defines a heterogeneous collection of objects. In
mathematical terms, an or-structure is a tuple of boolean-tagged elements, where exactly one of

the elements is tagged true, and all other pairs are tagged false. The true tag indicates which of

the or-structure elements is present. In relation to a programming language, an or-structure is

analogous to a union type or variant record.

The following definition specifies an object with one of three possible components:

object O is

components: X or Y or Z;

end O ;

In contrast to an and-structure, only one of the components of an or-structure is present at one
time.

3.3.3. Repetitive Composition

The repetitive composition operator defines a homogeneous collection of zero or more

objects. In mathematical terms, a repetitive structure is an ordered bag (a bag is a set with dupli-

cate entries allowed). In relation to a programming language, a repetitive structure is analogous

to a list or array. However, a repetitive structure differs significantly from an array in that a

repetitive structure is not of a fixed size.

The following definition specifies an object with zero or more components:

object L is

components : X* ;

end L ;

3.3.4. Recursive Composition

Unlike the preceding three composition forms, recursive composition has no explicit com-

position operator. A recursive definition results when an object is defined such that it contains

itself as a component, or subcomponent. In mathematical terms, a recursive structure

corresponds to a recursive mathematical definition. In relation to a programming language, a

recursive structure corresponds to a recursive type definition, which is typically defined using a

pointer. However, a recursive structure in RSL is not a pointer-based definition. RSL contains

no pointers.

The following are examples of recursive definitions:

object R is

components: X and Y and R;

end R ;

object R1

components: R2 and R3 and R4;

end RI;

object R2 is

components:

end R2;

R5 and R6;
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object R5 is
components: R7 and RI;

end R5;

In object R, the recursion is direct, since R is defined immediately as a component of itself. The

object R1 is indirectly recursive -- R 1 has a component R2, which in turn has a component R5,

which in turn has a component R 1. -

3.3.5. Common Uses of RSL Comlmsition Forms

The PersonDatabase object in Section 3.1 is a good example of and-composition. An

example of or-composition is

object MaritalStatus is

components: Married or Unmarried or Widowed or Divorced;

end MaritalStatus ;

It is common in specifications to define an object that contains any of a number of subob-

jects, intermixed in any order. Consider the following example:

object UnformatedDocument is

components : (RawText or FormattingCommand) * ;

description: (*

An UnformatedDocument contains RawText strings and

formatting commands intermixed in any order.

*);

end UnformatedDocument ;

The general composition form that specifies intermixed components is:

components: (g or B or ... )*;

This expression specifies a component structure that has an A or B or .... any number of times, in

any order. It should be noted that the following form does not specify intermixing:

components: (g* and B* and ...)

This form specifies a component structure that has zero or more A's, followed by zero or more

B's, followed by .... That is, all of the A's, if any, come first, followed by all of the B's, etc.

Keep in mind that and-composition specifies a tuple, where each component of the tuple must be

present.

The following example illustrates a practical use of recursive composition:

object DatabaseQuery is

components : SimpleQuery I

SimpleQuery, OrQueryOperator, DatabaseQuery

description: (*

A DatabaseQuery is an object that speci_es how a database

search can be conducted. For example, if a user wanted to

_nd all the records in a database with a name of Smith and

age of 25, or a name of Jones and age 35, the DatabaseQuery

object would be

Name=Smith and Age=25 or Name=Jones and Age=35

*);

end DatabaseQuery;

object SimpleQuery is

components: FieldValueSpeci_er I

FieldValueSpecifier, AndQueryOperator,

description: (*

SimpleQuery
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A SimpleQuery is the component of a query that and's

together two or more FieldValueSpecifiers, or is just a

single FieldValueSpecifier.

*)

end SimpleQuery;

object FieldValueSpeci_er is

components: FieldKey, EqualsSign,

end FieldValueSpecifier;

FieldValue ;

object FieldKey is

components: NameKey I

end FieldKey;

AgeKey ] AddressKey;

object NameKey = "name";

object AgeKey = "age";

object AddressKey = "address';

object EqualsSign .... ;

object OrQueryOperator = "or";

object AndQueryOperator = Mand';

3.3.6. Composition Expressions in Operations

In the current version of RSL, fully general composition expressions are only meaningful in

o_ect definitions. In operation definitions, only and-compositon is meaningful. The use of

or-composition in an operation definition is equivalent to and-composition and the use of list-

composition is ignored. For example, in RSL Version 2, the following two operation definitions

are equivalent:

operation Ol is

components 02 or 03 or 04*;

end Ol

operation Ol is

components 02 and 03 and 04;

end Ol

In a future version of RSL, general composition of operation components may be supported.

3.4. Operation Typing and Functionality

As in a programming language, operation input/output lists define the formal parameter

types that are accepted and produced by an operation. In contexts where operations are used
with actual parameters, the same sort of type checking applies in RSL as in a programming

language. Namely, the type of each actual parameter must agree with the type of the

corresponding formal parameter.

As noted in the introduction, all the operations defined in a specification are side effect free.

This means that an operation cannot use any object unless that object is an explicit input.

Further, an operation may effect change only through an explicit output. In the nomenclature of

programming languages, RSL is a fully functional language.

The notion that operations effect change rather than modify objects is also an important

aspect of functional definition. An operation does not modify objects to produce output objects.

Rather, a fully functional operation can only create new objects.

Consider the AddRecord example defined above. When this operation executes, it accepts

a database and record as inputs. What it outputs is a new copy of the input database, with a new
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copy of the input record added into the database. In programming language terms, functional

specifications have no global variables, no global files, and no call-by-var parameters. In this
sense, RSL functional definitions are similar to definitions in functional programming languages

such as pure LISP and ML.

The fully functional specification of operations is sometimes counter-intuitive, particularly

in the case of large objects in a transaction-oriented system. For-example, one might consider

the explicit input and output of a large database to be unnecessary and/or inefficient. It is neces-

sary since in order to construct a result that contains a new record, the original database must be

input. It cannot be assumed that the operation will read from some stored database file or other

external storage structure.

With regards to implementation efficiency, this matter is strictly not of concern in an RSL

specification. It is almost certainly not the case that a DBMS implementation would copy entire

databases from input to output. However, such implementation concerns are beyond the scope

of an RSL specification. The specification states in functional terms what an operation does,

including all inputs and outputs that it uses. A subsequent implementation can use whatever

efficient techniques are available, as long as the implementation meets the abstract specification.

3.5. Names and Types

In the examples thus far, the components of an entity have been shown as simple names.

Consider the PersonRecord example from above:

object PersonRecord is

components: Name and Age and Address;

description: (*

A PersonRecord contains the information items for an

individual in the PersonDatabase.

*);

end PersonRecord;

Here Name, Age, and Address are the names of other defined objects. Consider the following
alternate definition of PersonRecord:

object PersonRecord is

components: n:Name and a:Age and ad:Address;

description: (*

A PersonRecord contains the information items for an

individual in the PersonDatabase.

*);

end PersonRecord;

Here the components are defined using name�type pairs. The component structure of Person-

Record is precisely the same in both of the above two definitions. The name component of the

name/type pair is a local subobject name by which the component can be referenced. The names

are n, a, and ad in this example. The type half of a name/type pair is the name of a defined

object. The object types in this example are Name, Age, and Address.

A components definition can be legally specified with or without name/type pairs.

Name/type pairs are used when it is necessary to refer to a component in an RSL expression.

Name/type pairs can also be used in class definitions, and other RSL contexts. Upcoming sec-

tions of the report discuss the uses of name/type pairs in further detail.

It is instructive to contrast the use of name/type pairs in RSL versus a programming

language. Consider, for example, the equivalent of the last PersonRecord defi ifion in a Pascal-

like language:
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type Name = string;

type Age = integer;

type Address = string;

type PersonRecord =

record

n : Name ;

a : Age ;

ad: Address;

end;

Each RSL object is defined as a type in the programming language. Except for notational differ-

ences, the RSL and programming language definition have the same meaning.

A difference between RSL and a Pascal-like language is that component names are not

required in RSL. Consider the following fictitious Pascal-like record definition, which is

equivalent to the original RSL definition of PersonRecord, and which uses the equivalent of RSL

opaque atomic types (defined in Section 3.6 below):

type Name ;

type Age ;

type Address ;

type PersonRecord =

record

Name ;

Age ;

Address ;

end;

In this example, the field names are omitted in the record definition. This is generally not

allowed in a programming language, since it precludes runtime access to the record fields. How-

ever, such nameless fields are perfectly reasonable in RSL, since there is no "runtime" to worry

about. That is, the structure of an RSL object need only declare what the components are,

without necessarily providing a means to access the components. In this sense, an RSL

definition can be more abstract than a corresponding programming language definition.

There are cases in which object component access is necessary in RSL, in which cases

component names are necessary. These cases will be discussed in detail in upcoming examples.

3.6. Composite versus Atomic Objects

Any object defined with a non-empty components field is composite. An atomic object is

one of the following:

• an object defined as a built-in type,

• an object with no components field, or

• an object defined with "components: empty".

The built-in atomic types are number, integer, real, string, and boolean. The number atomic

type is a synonym for real -- they both represent mathematical real numbers. The integer type
is the normal subset of real. The string type represents symbolic values. The boolean type

denotes a true/false value.

The general format for a composite object definition is the following:

object name is

components: ...;
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endname

In contrast, the general format for an atomic object definition is:

object name is name

e i •

end name ] _

where the definition body (denoted by the ellipses) has no components. The name following the

is must be a built-in atomic object name or the name of another atomic object. Note that the

body in an atomic object definition is optional. Hence, an atomic definition may take a simple

form, such as:

object DataMaximum is number;

or a longer form, such as:

object DataMaximum is number

operations: . . . ;

description: . . . ;

end DataMaximum;

The reader should note the distinction between the following two definitions, the first of which is

composite and the second atomic:

object C is

components: integer;

end C

object A is integer;

C is a composite object containing a single integer component. In contrast, object A is an

atomic integer object. While the definitional form of object C is not particularly useful, it is

syntactically valid and must therefore be understood.

A special form of atomic definition is an opaque object. The general form of opaque

definition is either of the following:

object name ;

object name is

components: ;

.oe

end name

As in the preceding form of atomic definition, the body in an opaque definition is optional,

so that any one of the following forms is legal:

object External Item;

object ExternalItem is

description: . . . ;

end ExternalItem;

object ExternalItem is

components : ;

description: ... ;

end External Item;

If the components keyword is given in an opaque definition, it must be followed by an empty

components expression, or by one of the single keywords empty or none. The keywords empty

and none are synonyms, both denoting an empty composition expression. The use of opaque
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definitionsis discussedfurtherin Section3.8.

3.7. Abstract versus Concrete Objects

Object definitions that use the keyword is define a formal object type. Object definitions

that use the symbol "=" in place of is define a concrete object value. A type represents an

abstract set of many possible values, typically an infinite set. A value represents a single con-

crete object. For example, the standard type integer represents the infinite set of all possible

integers. The value 10 represents the single integer value 10.

As a user-defined example, the following object definition represents the set of all possible

values that have a number component and a string component:

object NumberAndString is

components: number and string;

end NumberAndString;

In contrast, the following definition defines a single value of this type:

object TenAndXyz:NumberAndString = [i0, "xyz"] ;

There are two general formats for concrete value definition:

object value-object-name = value-expression

..I

end name ]

and

object value-object-name:type-object-name = value-expression

..i

end name ]

The first of these two forms is used to define an object as a value of an atomic type, i.e., numeric,

string, or boolean. The second form is used to define concrete values of composite types. In

both forms, additional object attributes are optional.

The value expression to the right of the "=" denotes the concrete value. A numeric value is

denoted by a real or integer numeric literal. A string is denoted by a double-quoted string literal.

A boolean value is denoted by one of the standard identifiers true or false. A concrete compo-

site value is constructed using square bracket operators "[" and "]". For example, the object

value [ 1, 2, 3] is a composite value consisting of the numbers 1, 2 and 3. Composite values can

be nested to any depth.

A composite value can represent either an and'd or list-of object as necessary. For exam-

ple, the value [1, 2, 3] is a concrete value for either of the following types of object:

object NumberList is

components : number* ;

end NumberList ;

object NumberTriple is

components: number and number and number;

end NumberTriple;

3.8. The Representational Base of Object Hierarchies

In order for an RSL definition to be complete, all referenced entities must be defined. In

particular, there must be a definition for any object referenced by name in the components part
of another definition or in the input/output lists of an operation. At some point, the hierarchy of
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objectdefinitionsmust"bottomout" at atomicobjects. Given the formsof atomicobjectdis-
cussedabove,thereare three levelsof abstractionfor defining the atomicbasisof an object
hierarchy:

1.opaque objects

2. atomic objects defined as one of the built-in atomic types _

3. atomic objects defined as a specific concrete value

Of the three alternative levels, opaque definitions are the most abstract. An opaque definition

signifies that the value set of an object is to be considered implementation-dependent, and that

the abstract specification will not specify it concretely. Defining an object as a built-in type is

intermediate in abstraction. This form of definition is more concrete than an opaque definition,

but less concrete than specifying an object as a specific concrete value. Defining as concrete

values is the most concrete basis for a requirements specification.

As an example, recall the DatabaseQuery definition from above. In that example, the

atomic objects NameKey, AgeKey, etc. were defined as concrete atomic values. They could

alternatively have been defined as opaque objects using the following definitions, in place of the

definitions given originally in the example:

obj oct NameKey ;

object AgeKey ;

object AddressKey ;

object EqualsSign ;

object OrQueryOperator;

object AndQueryOperator ;

The third alternative for these atomic objects is the following set of definitions:

object NameKey is string;

object AgeKey is string;

object AddressKey is string;

object EqualsSign is string;

object OrQueryOperator is string;

object AndQueryOperator is string;

Any of the three levels of atomic specification is legal in RSL. Which is chosen depends on the

degree of abstraction desired.

3.9. Default Operation Parameters

When concrete o_ects are defined in a specification, it can be useful to specify operations

that accept these o_ects as inputs and/or produce them as outputs. Consider the following addi-

tion to the PersonDatabase example presented earlier:

object DefaultName = "Name Unknown';

object DefaultAge = -i;

object DefaultAddress = "Address Unknown";

object DefaultPersonRecord = [DefaultName, DefaultAge, DefaultAddress];

operation AddRecord is

inputs: PersonDatabase, PersonRecord:=DefaultPersonRecord;

outputs: PersonDatabase;

description: (*

Add a new record into a person database.

*);

end AddRecord;
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Here, concrete objects have been defined as defaults for the components of a default Person-

Record. The AddRecord operation has then been modified to specify a default value for the Per-

sonRecord input.

The general format for defining default operation parameters is the following:

operation name is
inputs: type-name:=value-name .... ;

outputs: type-name:=value-name .... ;

end name;

where type-name denotes an abstract object and value-name denotes a concrete object.

A default value in a parameter list specifies what the standard parameter value should be, if

no other value is given when an operation is invoked. Using parameter defaults, a specifier can

define specific concrete values that constitute the standard required data for a system. When the

system is implemented, these standard data will be those installed for initial system operation.

In the absence of other user input that changes these values, the defaults will remain in use.

4. Classes

An object or operation definition may be specified as a class. A class definition is a general

template for an object or operation, of which more specific instances can be declared. The fol-

lowing example shows a redefinition of the PersonRecord object defined earlier, this time as a
class:

object class PersonRecord is

components: Name and Age and Address;

description: (*

The PersonRecord class contains components that are common

to all personnel in the database.

*);

end PersonRecord;

This example specifies that all records in the database will contain the common components of

Name, Age, and Address. The PersonRecord class can then be specialized as follows:

object StaffEmployee instance of PersonRecord is

components : HourlyWage and EmploymentStatus ;

operations : ;

description: (*

A StaffEmployee is distinguished by HourlyWage and

EmploymentStatus components.

*);

end StaffEmployee;

object Programmer is

components: Salary and Step;

operations: ;

description: (*

A Programmer is distinguished by Salary and Step

components.

*);

end Programmer;

object Manager instance of PersonRecord is

components: Salary and Step and Supervisees;

description: (*
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A Manager is distinguished by Salary,

components.

*);

end Manager;

Step, and Supervisees

object Supervisees is

components: (StaffEmployee or Progranmler)*; -

description: (*

This is the list of people that a manager supervises.

*);

end Supervisees;

Each instance of PersonRecord is stud to inherit the generic class components. Th_ is, StaffEm-

ployee, Programmer, and Manager _l inherit the Name, Age, and Address components _om _e
PersonRecord class. In addition, each of the instances fur_er specializes itself by adding further

fields. For example, a SmffEmployee is speci_ized by HourlyWage and EmploymentSt_us

components.

The purpose of a class is to define attribu_s th_ are common to a number of entities. The
class contains the common attribu_s, and each in_ance automatically inherits these at_ibu_s, in

addition to adding zero or more speci_i_ng attribu_s.

Classes may be defined in any number of levels. Consider the following refinement of _e

preceding example:

object class PersonRecord is

components: Name and Age and Address;

description: (*

The PersonRecord class contains components that are common

to all personnel in the database.

*);

end PersonRecord;

object StaffEmployee instance of PersonRecord is

components: HourlyWage and EmploymentStatus;

operations: ;

description: (*

A StaffEmployee is distinguished by HourlyWage and

EmploymentStatus components.

*);

end StaffEmployee;

object class SalariedEmployee instance of PersonRecord is

components: Salary and Step;

end SalariedEmployee;

object Programmer instance of SalariedEmployee is

description: (*

A Programmer is now just an instance of SalariedEmployee,

from which in inherits components Salary and Step components.

*);

end Programmer;

object Manager instance of SalariedEmployee is

components: Supervisees;

description: (*

A Manager inherits Salary and Step components.

specializes with Supervisees.

It
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*);
end Manager;

object Supervisees is

components: (StaffEmployee or SalariedEmployee)*;

description: (*

This is the list of people that a manager s_pervises.

*);

end Supervisees;

Here there are three levels of class definition. A class object that is itself an instance is called a

subclass. In this case, SalariedEmployee is a subclass. It inherits components from Person-

Record and in turn defines components that will be shared by its instances. Note that inheritance

is fully transitive. That is, instances inherit all components from all levels of parent class above

them. In this example, the instance object Programmer inherits all components from the two

levels of parent class above it. Namely, it inherits Name, Age, Address, Salary, and Step. Note
further that an instance need not provide any specializing components if it inherits all that it

needs from its parent class(es). The Programmer object is such a case.

Using name/type pairs in a class definition can enhance the expressibility of the class

hierarchy. Suppose it is the case that all employees have an office, but the specific type of office

is defined differently for individual instances. The following example expresses this idea:

object class PersonRecord is

components: Name and Age and Address and Of_ce: ;

description: (*

The PersonRecord class contains components that are common

to all personnel in the database.

*);

end PersonRecord;

object StaffEmployee instance of PersonRecord is

components: HourlyWage and EmploymentStatus and Of_ce:none;

operations: ;

description: (*

A StaffEmployee is distinguished by HourlyWage and

EmploymentStatus components.

*);

end StaffEmployee;

object class SalariedEmployee instance of PersonRecord is

components: Salary and Step;

end SalariedEmployee;

object Programmer instance of SalariedEmployee is

components: Of_ce: SharedOf_ce;

description: (*

A Programmer is now just an instance of SalariedEmployee,

from which in inherits Salary and Step components.

*);

end Programmer;

object Manager instance of SalariedEmployee is

components: Supervisees;

description: (*
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A Manager inherits Supervisees

components.

*);

end Manager;

object SharedOffice is

components: OfficeNumber and Desk*;

end SharedOffice;

object PrivateOf_ce is

components: OfficeNumber and Desk and Window;

end PrivateOffice ;

Here the "Office: "component of PersonRecord is only the name half of a name/type pair. Syn-

tactically, it is a name followed by a colon, with no object name following the colon. This

means that an instance must specify the type half of this pair to complete the definition. This

form of component in a class definition is called a specialization-required component.

In the above example, the StaffEmployee object is specialized with "Office:none". Note

that since specialization is required for the Office, a complete definition must define the type for

Office:, even if that type is "none". That is, simply leaving the Office: component out of the

StaffEmployee definition would result in an incomplete specification.

The definition of SalariedEmployee does not specify a type for "Office:", but this is accept-

able since it is a class, and its instances can provide the required specialization. Hence, the Pro-

grammer components specify "Office: SharedOffice" and the Manager components specify
"Office: Privateoffice".

4.1. Multiple Inheritance

It is sometimes useful to have a single instance that inherits at_ibums from more _an one

parent. For example,

object MemberOfTechnicalStaff instance of Manager and Programmer is

components: TechnicalSpeciality;

description: (*

A member of the technical staff is both a manager and

a programmer.

*);

end MemberOfTechnicalStaff;

The rule for multiple inheritance is that the instance inherits the union of the parent attributes. In

particular, if the parents have one or more common attributes, then the instance has only a single
version of the common attributes.

4.2. Restrictions on Inheritance and Specialization

Instances inherit components from a parent class, and can add new components to those

that are inherited. Instances cannot however uninherit or override a component that is specified

in the parent. Uninherit would mean that an instance could eliminate one or more parent com-

ponents. Override would mean that if a parent component were specified with both a name and a

type, that the type could be changed in the instance. Not all class-based languages have this

additivity restriction, but RSL does.
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4.3. Class Objects as Types

It was noted earlier that an abstract object formally defines a type, in the same sense as in

strongly-typed programming languages. Using the class/subclass hierarchy allows the definition

of subtypes. Specifically, an instance of an object class is considered a subtype of its parent
class.

The major effect of subtyping in RSL relates to the use of-class and instance objects in

operation parameters. The typing rule for operation parameters is the following:

A formal parameter of a class type may accept an actual parameter of that

type, as well as any instance type(s) of which the formal type is a parent.

Consider the following example:

object class Parent is ... ;

object class Child instance of Parent is ... ;

object class GrandChild instance of Child is ... ;

operation 0 is

inputs: p:Parent, g:GrandChild;

outputs: c :Child

Here Child is a subtype of Parent; GrandChild is a subtype of Child and in turn a subtype of

Parent. Hence, by the typing rule above, the formal input parameter p can match an actual

parameter of any type in the class hierarchy. I.e., an actual parameter of type Parent, Child, or
GrandChild can be supplied to the input p. In contrast, only an actual parameter of type

GrandChild can be supplied to the formal input g. The output parameter c produces a value of

type Child or GrandChild, but not Parent.

Notice that subtyping of formal parameters is one-directional. That is, a formal parameter

of a class type may accept actuals of itself or any instance type. However, a formal parameter of

an instance type may not accept parameters of a parent type. This is the same general rule as in

typed object-oriented programming languages, such as C++ [Stroustrup 91].

5. Modules

Entity definitions are packaged within modules. The syntax and semantics of RSL modules

are similar to that of the Modula-2 programming language [Wirth 85]. The basic format of an

RSL module is the following:

module name ;

[imports]

[exports]

[attribute-definitions ... ;]

[entity definition; I

formal definition; ] ...
end name

Module imports and exports optionally define inter-module name visibility. Attribute-definitions

specify user-defined attributes, as described in Section 6 below. If any attribute definitions are

present, they must appear before entity definitions. Entity-definitions are objects and operations,

as described in the preceding section. Formal-definitions are discussed in Sections 7 and 8
below.

In terms of packaging, a module defines a name scope within which all defined entities are

visible. Any definition within a given module may reference any other entity defined within the
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same module. Unlike many programming languages, an entity definition does not need to lexi-

cally precede its reference(s) within a module.

Normally, entities defined in two different modules are mutually invisible. For example if

object A is defined in module Ml and operation B is defined in module M2, the definition of B

cannot reference A as an input or output. The use of import and export declarations extends the

visibility of names between modules. The general format of an import declaration is the follow-

ing:

from module-name import [qualified] entity-name ....

and the format of export is:

export entity-name ....

Consider the following example:

module A;

export Ol ;

object Ol is ... ;

object 02 is ... ;

end A;

module B;

from A import O1;

operation Opl is

inputs: Ol .... ; (* Legal reference to Ol *)

end Opl

operation Op2 is

inputs: 02, ... ; (* Illegal reference to 02 *)

end A;

The import declaration in B makes object O1 visible within B. Hence, the reference to O1 in

Opl is fine. Since object 02 is not explicitly imported into B, the reference to 02 in Op2 is ille-

gal.

It should be noted that imports must be matched by corresponding exports. That is, a name

cannot be import into one module without having been export from another. Conversely, if a

module exports one or more entities, each of these entities must be referenced by at least one

import.

The use of import/export can lead to name conflicts if a module both imports and defines an

entity of the same name. For example:

module A;

export Ol ;

object Ol is ... ;

end A;

module B

from A import O1;

object Ol is ... ; (* Name conflict *)

operation Op is

inputs: O1; (* Ambiguous reference *)

Here module B both imports and defines O1. To overcome such name conflicts, names can be

import in qualified form, and referenced by prefixing with the name of the defining module. The

following is a version of the immediately preceding example with the name conflict removed:

module A;

export Ol ;
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object Ol is ... ;

end A;

module B

from A import qualified O1;

object Ol is ... ;

operation Op is

inputs: 01;

outputs: A.OI;

(* No conflict *)

(* Legal reference to B's Ol *)

(* Legal reference to A's Ol *)

Note the use of the keyword qualified in the import clause. Here, reference to the imported ver-

sion of O1 is denoted by the qualified reference "A.O1" within B. The unqualified reference to
O1 refers to the Ol defined within B. Hence, there is no name conflict in this case, since both

versions of O1 can be referenced unambiguously.

6. User-Defined Attributes

In the most general sense, the format of an entity definition is the following:

[object Ioperation] name is
attribute-name • attribute-value

lee

end name

In the examples thus far, built-in attributes have been discussed. For an object, the built-in attri-

butes are: components, operations, equations, and description. For an operation, built-in attri-

butes are components, inputs, outputs, preconditions, postconditions, and description.

A user-defined attribute specifies additional relational or descriptive information about an

object or operation. Consider the following example:

module M;

define object attribute scheduled_by, coordinated_by, special_note;

object Meeting is

components: StartTime, EndTime, Attendees .... ;

scheduled_by: Staff Person;

coordinated_by : Manager ;

description: (* A meeting represents ... *) ;

special_note: (* Ask our system analyst if this is correct *);

end Meeting;

object StaffPerson is ... ;

object Manager is ... ;

end M

This example illustrates how attributes are defined and used. Before use, an attribute must be

defined in a define clause of the following general form:

define [object I operation] attribute attr-name ....

Such a definition allows the listed attr-names to appear within entity definitions. In the example

above, scheduled_by, coordinated_by, and special_note are defined object attributes. Note that

object and operation attributes are separately declared, so if the same attribute is desired for both

objects and operations, two separate define declarations must be given.

Once defined, an attribute can be put to two uses: (1) to define formal relations between

entities -- a relational attribute; (2) to augment an entity definition with special-purpose com-

ments -- a commentary attribute. These two uses are specified by the following two syntactic
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forms, respectively:

attr-name : entity-name ....

attr-name : RSL comment

In the Meeting example above, scheduled_by and coordinated_by are relational attributes;

special_note is commentary. -

A relation between entities specifies a non-hierarchical connection. To understand such

connections, it is instructive to compare relational attributes to the built-in RSL component rela-

tion. Consider the following alternative to the Meeting specification above, where no relational

attributes are used:

module M

object Meeting is

components: StartTime, EndTime, Attendees,

scheduled_by:Staff Person, coordinated_by: Manager;

end Meeting;

object StaffPerson is ... ;

object Manager is ... ;

end M

Here, what were formerly specified as relations are now components of the meeting. The rela-

tional versus hierarchical specifications define different conceptual views. In the relational

specification, the scheduled_by and coordinated_by objects are not part of the Meeting as in the
hierarchical definition. While the difference is subtle, it can be important in terms of construct-

ing an accurate view of a system being specified.

The distinction between relational versus hierarchical specifications can be further clarified

by considering bi-directional relations. Here is a further refinement of the Meeting example:

module M;

de_ne object attribute scheduled_by, coordinated by, special note;

de_ne object attribute scheduler_of, coordinator_of;

object Meeting is

components: StartTime, EndTime, Attendees, ... ;

scheduled_by: Staff Person ;

coordinated_by : Manager ;

description: (* A meeting represents ... *);

special_note: (* Ask our system analyst if this is correct *);

end Meeting;

object StaffPerson is

scheduler_of: Meeting

end Staf fPerson ;

object Manager is ... ;

coordinator_of: Meeting

end Manager ;

end M

Here a bi-directional scheduling relation has been established between Meeting and

StaffPerson. A similar bi-directional coordinating relation has been specified between Meeting

and Manager. Such relations would be more awkward to specify using hierarchical components,
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andthehierarchywouldbeinappropriatein thesensethatnoneof theobjectsparticipatingin the
relationsis conceptuallypart of the others.

Commentary attributes are particularly useful to describe meta-properties of a requirements

specification. The intention of the special_note attribute above is to supply a temporary annota-
tion for use during the development of the specification. While it is possible to use the built-in

description field for such commentary, it is clearly more awkward to do so, as the following

version of Meeting illustrates:

module M;

de_ne object attribute scheduled_by, coordinated_by;

object Meeting is

components: StartTime, EndTime, Attendees .... ;

scheduled_by: Staff Person;

coordinated_by : Manager ;

description: (* A meeting represents ...

SPECIAL_NOTE: Ask our system analyst if this is correct *);

end Meeting;

object StaffPerson is ... ;

object Manager is ... ;

end M

It should be noted that there is a fully functional notation that can be substituted for the use of
relational attributes. In this sense, relational attributes can be viewed as "syntactic sugar" for an

equivalent functional definition. Details of the equivalence are discussed in Appendix C. Rela-
tional attributes are provided in RSL for specifiers who find relational notation conceptually con-

venient. Those users who would prefer to use a fully functional notation, while retaining the

expression power of relations, should consult Appendix C.

7. Formal Specifications

RSL object and operation definitions can be augmented with formal mathematical

specifications. These formal specifications are in three forms: equational, predicative, and

axiomatic. Equational specifications are defined by associating a set of equations with an object.

Predicative specifications are defined by associating preconditions and postconditions with an

operation. Axiomatic specifications are defined by associating a set of global conditions with all

of the objects and operations within a module.

The predominant form of logical expression used in a formal specification is the predicate.

Semantically, a predicate is a mathematical formula with a boolean (i.e., true/false) value. A

predicate is fundamentally the same form of boolean expression as found in programming

languages. However, predicates in RSL can contain quantifiers and list operators that are typi-

cally unavailable in programming languages. In addition to boolean-valued expressions, RSL

provides numeric, string, and list-valued expressions.

This section of the report is a terse syntactic description of the elements of a formal

specification. Section 8 to follow contains a tutorial discussion of formal specification, with

examples.

7.1. Variable names

The base elements in an expression are variable names. Variables are declared in

name/type pairs that appear in component expressions, input/output lists, and other contexts.

Syntactically, a variable name is an identifier.
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The readershouldnote the distinction betweena variablename,usedin an expression,
versusan objectname. An objectnameis definedusinga completeobjectdefinition. Thatis,
objectnamesarethoseandonly thosenamesdefinedin definitionsstarting"object object-name

... ;". In contrast, a variable name is defined only in the context of a name/type pair. Variable

names are those and only those names defined as variable-name:object-name. Such name/type

pairs appear in one of four syntactic contexts: -

1. composition expressions appearing in the components part of an object definition

2. input/output lists in an operation definition

3. equation variable definitions

4. forall and exists clauses

The first two of these contexts were described in a preceding section of the report. The last two

contexts are described shortly.

7.2. Functional, Arithmetic, and Boolean Expressions

A functional expression is the invocation of an operation or auxiliary function (auxiliary

functions are defined below). The general form of a functional expression is:

name(args .... )

where name is the name of a defined operation or auxiliary function and args are input argu-

ments. Any defined operation or auxiliary function can be used in a functional expression. The

argument types of functional expressions are type checked in the same manner that function

calls are type checked in a programming language. That is, the number and type of arguments

must agree with the input/output declarations in the named operation.

The standard boolean operators and, or, and not are used in predicates. Note that and and

or have overloaded meanings in RSL. In the context of a composition expression, and and or

denote composition primitives. In the context of a predicate, and and or denote boolean opera-
tors.

Predicates can contain the relational operators =, -= (not equal), <, >, <=, and >=. These

are defined between expressions of the same type.

Predicate terms can include standard arithmetic operations on real numbers (including

integers). The operators are +, -, *,/, div, and mod. Note that since a predicate must have a

boolean value, arithmetic expressions can only be used in predicates in the context of other logi-

cal operations, such as comparisons. For example, "a+b" is a legal expression but not a legal

predicate. "(a+b) > 10" is a legal predicate.

7.3. List Operations

List operations available for use in predicates are: II(concatenation) # (length), and in (ele-

ment of). List operations can be used on variables denoting a list-composed object.

7.4. Composite Object Selector Operations

When an object is declared with multiple anded subcomponents, there is a built-in and

selector operation for each such component, as the following general definition illustrates:

object Foe is

components: Fool and Foe2 and ... and Foon;
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(*Built-in operations:*)

SelectFool: (Foe) -> (Fool);

SelectFoo2: (Foe) -> (Foe2);

SelectFoon: (Foe) -> (Foon) ;

end Foe ;

An alternate, "syntactically sugared" notation for and-selector operations is the infix "." opera-

tor. Using infix ".", the following two terms are the same:

SelectFool ( foe ) is equivalentto foe. Fool

Note that the "." operation is analogous to the use of "." in a programming language. Namely,

.... selects an and-component in the same manner that "." selects a record field in a programming

language.

When an object is declared with multiple or'd subcomponents, there exist two or-selector

operations for each such component, as the following general definition illustrates:

object Foe is

components: Fool or Foe2 or ... or Foon

(* as sumable operations: *)

IsFool: (Foe) -> (bool);

IsFoo2: (Foe) -> (bool);

IsFoon: (Foe) -> (bool);

SelectFool: (Foe) -> (Fool);

SelectFoo2: (Foe) -> (Foe2);

SelectFoon: (Foe) -> (Foon) ;

end Foe ;

The operations prefixed with "Is" are used to determine which alternative a subobject is. The

operations prefixed with "Select" are used in the same fashion as the selectors for an and-

composed object.

An alternate, "syntactically sugared" notation for or-selector operations is the infix "?"

operator. Using infix "?", the following two terms are the same:

IsFool (Foe) is equivalent to Foe?Fool

A common use for the or-selector is in objects with an error alternative. Consider the following

example:

object ValueOrError is

components: Value or Error;

end ValueOrError ;

for which ValueOrError?Value is true if the subcomponent of foo is Value, or

ValueOrError?Error is true if the subcomponent is an Error subobject. The "?" operator allows

or'd components to be "safely" accessed. That is, before accessing an or component via ".", it

should be checked with "?".

When an object is declared with a list of subcomponents, there is a built-in list selector

operation for an individual subcomponent and a sublist operation that selects a range of subcom-

ponents. The following general definition illustrates these list selectors:

object Foe is

components : Fool* ;

(*Built-in operations:*)

SelectNthFool: (Foe,number) -> (Fool) ;
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SelectMthruNthFoo: (Foo,number,number) -> (Foo) ;

end Foo

An alternate, "syntactically sugared" notation for list-selector uses "[" and "]" brackets. Using

brackets, the following two terms are the same:

SelectNthFool ( foo, n) isequivalentto foo [n]

as are the following two:

Se lectMthruNthFoo ( foo, m, n) isequivalentto foo [m: n ]

Note that the "[...]" operation is analogous to the use of "[...]" in a programming language.

Namely, "O[n]" selects the nth component of a list-composed object in the same way that "A[n]"

selects the nth component of an array in a programming language.

In relation to other predicate operators, ".", "?", and "[...]" have the highest precedence.

7.5. Logical Implication and Quantifiers

Logical implication operations are if-then-else, "=>" (implies), and "<=>" (iff). Note that

this if-then-else is a boolean operator, not a control construct as in a programming language. In

the expression

if T then P 1 else P2

T is a predicate, P1 and P2 are each expressions, and the value of the expression is P1 if T is
true, or P2 if T is false.

Universal and existential quantifiers can appear in predicates. In normal mathematical

notation, universal quantification is represented by an upside down "A" and existential

quantification by a backwards "E". In RSL, the quantifier operators are forall and exists. The

general form of universal quantification is

forall (x:t) predicate

read as "for all values x of type t, predicate is true" where x must appear somewhere in predi-

cate. The general form of existential quantification in RSL is

exists (x:t) predicate

read as "there exists an x of type t such that predicate is true" where x must appear somewhere in

predicate.

In standard mathematical logic, universal quantification typically takes one of the following

two syntactic forms:

(1) V (x I pl(x)) p2(x)

(2) V (x _ S) p(x)

The reading of form (1) is "for all values x such that predicate p 1(x) is true, p2(x) is also true".

The reading of form (2) is "for all elements x in set S, predicate p(x) is true"

In RSL, the forall operator quantifies over all values of a particular object type. In com-

parison to forms (1) and (2) above, the general form of universal quantification in RSL is

forall (x: O) p(x)

The reading of this RSL form of quantification is "for all values x of object type O, predicate

p(x) is true". The reason that RSL quantifies over object types is that RSL is based on typed

logic. This means that all variables that appear in RSL predicates must be of some object type.

In many mathematical treatments of quantification, the issue of strong value typing may not
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arise,andhencethenotionof quantifyingovertypesdoesnotarise.
Thefact that RSLis basedon typedlogic doesnotrestricthow universalquantificationcan

be used,it just meansthat the useof universalquantificationin RSL must take typing into
account.Therefore,thespecificformatof quantificationis slightlydifferentthanin untypedlog-
ics.

Both quantificationform (1) and form (2) abovecanbe easily representedin RSL. The
RSLfor form (1) is:

forall (x:SomeObject) if pl(x) then p2(x)

where the predicates operations pl and p2 take SomeObject as input and output boolean. The

RSL notation for quantification form (2) is:

forall (x:Elem) if x in S then p(x)

where object S must be composed of Elem*. Since these two forms of quantification are quite

typical, RSL provides alternative syntactic notation to express them conveniently. Specifically

the following two RSL forms correspond to universal quantification forms (1) and (2) above:

(1) forall (x:t l predicate) predicate

(2) forall (x in list) predicate

In form (2), list must be a list-composed object, and x will be of the component type of list. For

example,

object SomeSet is

components : Elem* ;

end SomeSet;

operation SomeSetOp is

inputs: s:SomeSet;

outputs: s':SomeSet;

postcond: forall (e in S) f(e);

end SomeSetOp;

In this example, e is a variable of type Elem within the body of the forall.

Section 8 below contains further examples on the use of universal

quantification in RSL.

and existential

7.6. Pre/Postconditions, Equations, and Axioms

Preconditions and postconditions are associated with an operation by including precondi-

tion and/or postcondition declarations within the operation definition. The syntactic forms are"

precondition: predicate,

postcondition" predicate ;

where predicate is a legal RSL predicate expression. Typically, conditions arc made up of a

number of predicates, composed with boolean "and's" and "or's". Section 8 has a number of

examples that illustrate the use of pre/postconditions in RSL.

Equations are associated with an object by including an equation declaration within the

object definition. The general form of equation definition is the following:

equations:

var vat_name:object_name .... ;

functional_expr == quantifier free_expression;

... *_
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where a functional_expr is as defined above, and a quantifier_free__expression is an expression

that contains no quantifiers or list operations. Note that the quantifier_free_expression is not
limited to a boolean value, that is, it need not be only a predicate. The variable declaration(s)

that precede the equations define auxiliary variables that are used in the equations. The next sec-

tion of the report contains example equation definitions in RSL.

The "==" operator and the "=" operator should not be confused. The "==" separates the two

sides of an equation; it has the lowest precedence of any infix operator. The "=" is the logical

equality operator, which returns a boolean value. It has the same precedence as the other com-

parison operators.

Axioms are associated with all of the objects and operations defined within a module. Syn-

tactically, an axiom is a predicate:

axiom: predicate ;

7.7. Auxiliary Functions

As noted in Section 1.3, the objects and operations in an RSL specification should be those

that are visible to end-users of the specified system. When a specification is fully formalized, it

is sometimes necessary or convenient to define auxiliary functions that are referenced in

pre/postconditions or equations. An auxiliary function differs from an operation in that it is not

intended to be visible to the end user of the specified system.

Consider the following example:

object NumericPair is

components : nl :Number, n2 :Number;

end NumericPair ;

operation DoSomethingWithPairs is

inputs: pl: NumericPair, p2: NumericPair,

output: s':SomeOtherObject;

precondition: if PairwiseLess(pl,p2) then

end DoSomethingWithPairs;

s: SomeOtherObject;

° • ° ;

function PairwiseLess(pl:NumericPair, p2:NumericPair) : (boolean) =

(pl.nl < p2.nl) and (pl.n2 < p2.n2);

Here the auxiliary function PairwiseLess is defined. This function takes inputs pl and p2, both

of type NumericPair. It produces a boolean output. The following is the general format of an

auxiliary function:

function name (list of inputs) : (list of outputs) =

body
end name

The function body is an expression of the output type(s). If the function produces a single out-

put, then the body is an expression of that type. If the function produces more than one value,

then the body is a list of expressions enclosed in square brackets, where each expression

corresponds ordinally by type to each of the output parameters.

While PairwiseLess is not strictly necessary in the preceding example, it can make the
specification clearer and more concise, particularly if PairwiseLess is used in several different

preconditions and postconditions. The next section contains further examples on the use of auxi-

liary functions and a discussion of when their use is appropriate.
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8. Formal Specification Examples

The four object composition primitives in RSL are just that -- primitive. In particular, using

just these four primitives, there is no way to specify any of a number of important properties

about objects and operations. For example, in the PersonDatabase object suppose it is necessary

to specify that the database cannot have duplicate entries. Or, suppose it is necessary that the

database behave as a queue-like structure, such that new records are added on a first-come-first-

served (FIFO) basis. Neither of these or similar properties can be defined with the use of com-

position primitives alone. The use of formal specification is necessary in such cases.

One method to describe properties such as these is to use English. It is in fact useful to

describe all properties of an entity in its English description. However, it is not sufficient to rely

solely on natural language to specify critical properties. To do so soon leads to well-known

problems of ambiguity and imprecision. Therefore, it is necessary to use the more formal

language of mathematics to obtain a truly precise and unambiguous specification.

Another method to describe properties is to use a computer programming language. This

has the advantage of being fully precise and unambiguous. However, using a programming

language for specification is fundamentally contrary to the purpose of specification. Namely, a

specification should be as free as possible of implementation detail. The purpose of a program-

ming language is precisely for the expression of implementation detail.

To overcome the disadvantages of English and programming languages, researchers have

developed a number of formal techniques expressly for use in specification. The two formal

techniques supported primarily in RSL are algebraic and predicative specification. With the

algebraic technique, formal properties are specified as a set of equations associated with an

object. Hence, algebraic specifications can be considered object-oriented. In the predicative

technique, formal properties are specified as preconditions and postconditions on operations.

Hence, predicative specification can be considered operation-oriented.

It is important to note that the two techniques provide different approaches to formal

specification. A system can be fully specified using only the algebraic approach, it can be fully

specified using only the predicative approach, or it can be specified using a combination of the

two approaches.

A potential problem with either of these forms of specification is the introduction of imple-

mentation biases into a specification. As examples below illustrate, these formal specification

techniques tread a fine line between specification and implementation. In fact, what many

software engineers call a specification language others may call a very high-level programming

language.

The gist of the problem is that the more precise we try to become with a specification, the
more we tend to constrain what the implementation can look like. However, this violates the

general principle that a specification is as free from implementation details as possible.

Another problem is that in some cases we find that in order to state a specification

sufficiently precisely, we need to interject auxiliary functions, thereby violating the general rule

that a specification should contain only entities directly visible to the end user.

In summary, specification is a continual battle between risking imprecision by saying too

little versus risking the addition of implementation details by saying too much. The experienced

specifier learns how to wage this battle successfully.
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8.1. Equational Specification

An equational specification formally defines an object in terms of equations between the

operations of the object. Equational specifications are desirable because they require no under-

lying data model. Rather, the definition of an object is stated entirely in terms of its abstract

operations. This model-free property of equational specification is generally not satisfied by

other forms of formal specification. For example, the predicative style of specification defined in

the next section of the report is not model-free. Rather, predicative specification relies on a list-

based data model to provide a basis for defining formal preconditions and postconditions.

Without reliance on some underlying model, the predicative style of specification would not be

complete.

The process of defining an equational specification is divided into three major steps:

1. Define the operation signatures for the object's operations

2. Categorize the operations into constructors, destructors, selectors, and initializers

3. Define the equations

To illustrate these steps, consider the definition of a database object that has a set-like structure.

That is, it has the property that duplicate entries are not allowed. Here is an equational definition
for such a database:

object SetDB is

components: Elem*; (* Note the minimal representation *)

operations:

Insert: (SetDB, Elem) -> (SetDB),

Delete: (SetDB, Elem) -> (SetDB),

Find: (SetDB, Elem) -> (boolean),

EmptyDB: () -> (SetDB);

(* Constructor operation *)

(* Destructor operation *)

(* Selector operation *)

(* Initializer operation *)

equations:

var s: SetDB; e, e': Elem;

Find(EmptyDB()) == false;

Find(Insert(s, e), e') ==

if e=e' then true else Find(s,

Delete(EmptyDB(), e) == EmptyDB();

Delete(Insert(s, e), e') ==

if e=e'

then Delete(s, e')

else Insert(Delete(s, e'), e);

e');

end SetDB ;

The first two lines of this definition use the standard RSL notation for defining any object. When

defining an object equationally, its component structure should always be an expression of the

form "C*", where C is a single object name. In the case of the SetDB, the components are

Elem*, where Elem is some type of element defined elsewhere.

The operations section of the SetDB definition contains the full signatures for its opera-

tions. The term signature refers to the inputs and outputs of an operation. The general form of

an operation signature in RSL is

operation name : (list of inputs) -> (list of outputs)
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wheretheinputandoutputlistscontainzeroor moreobjectnames.
Before defining the equations,an object's operationsare organizedinto the following

categories:

1. Constructor and initializer operations that build an object out of smaller parts.

These two categories can be grouped under the common h_eading of constructors.

2. Selector and destructor operations that access or remove some component of an

object. These two categories can be grouped under the common heading of selec-

tors.

3. Derived operations that can be defined formally in terms of one or more constructors
or selectors.

The comments in the SetDB definition indicate the categories of each of the operations.

The important characteristic of constructor operations is that they are additive. That is, the

resulting output of a constructor is a combination of the inputs. In contrast, selector operations

are subtractive. That is, the resulting output is some smaller piece of the input. In general, an

equationally defined object should have at least one each of the constructor, initializer, destruc-

tor, and selector operations.

Once operations have been fully defined and categorized, the equations themselves are

defined. The general format of an equation is the following:

functional_expr _--- quantifier_free_expression;

where afunctional_expr is defined above, and a quantifier_free_expression is an expression that

contains no quantifiers or set operations. The "--=-" operator separates an equation into a left-

hand side (LHS) and a right-hand side (RHS).

The following guidelines are useful for constructing a correct equational specification:

a. The equations define what the selector operations do to the constructor operations,
and not vice versa. That is, the outermost operation name in the LHS of an equa-

tion should always be a selector, not a constructor.

b. There should be one equation that defines what each selector does to each construc-

tor. Hence, if there are c constructors and s selectors, then there are c * s equa-

tions.

c. Equations are defined in an inductive style. Specifically, equations are defined in

groups, where the first of the group specifies what a selector does with an initial-

izer. The remaining equations in the inductive group specify what a selector does
with the other constructors.

Consider how these guidelines were used to construct the SetDB equations:

a. The SetDB selectors are Find and Delete. Hence, each of the SetDB equations has

one of these as the outermost operation in the LHS of the equation.

b. Since there are 2 selectors and 2 constructors, there are a total of 4 equations.

c. The inductive style of definition indicates that two groups of equations are appropri-

ate. The first group of two equations specifies what Find does to EmptyDB and

Insert. The second group of equations specifies what Delete does to EmptyDB and
Insert.

The most difficult part of an equational definition is constructing the second part of the inductive
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definition. Thatis,definingtheequationsfor whattheselectorsdowith thenon-initializingcon-
structors.To examinethispartof process,letusreviewwhataninductivestyledefinitionis.

To begin, it is assumedthatthereaderis familiar with theconceptof proof bymathemati-
cal induction. Readersentirelyunfamiliar with this topic shouldconsultanappropriaterefer-
ence.Recallthatan inductiveproof is atwo stepprocess,in whichapropositionp(x) is proved
for all valuesof x. The stepsare: -

1.Proofof thebasecase:setx--0andprovep(x).

2. Proofof the inductivestep:assumep(x) is truefor x=n andthenprovethat p(x) is
truefor x=n+1.

An inductiveequationaldefinition involvesa similar two-stepprocess.That is, wedefineone
equationfor a basecaseandonefor aninductivestep.In thebase-caseequation,thereis anana-
log to settingtheinductionvariableto 0 -- wedefinetheequationfor anobjectthathas0 com-
ponents.That is, the basecaseequationdefineswhata selectordoesto an initializer, sincean
initializer constructsan object with zerocomponents.In the SetDBexample,the basecase
equationsare:

Find(EmptyDB()) == false;

and

Delete(EmptyDB(), e) == EmptyDB() ;

These equations define what the selectors do with a SetDB of size 0, that is a SetDB constructed

with the EmptyDB initializer. Both these equations are quite intuitive -- if we try to find some-

thing in a SetDB of size 0, we receive a false result back. If we try to delete something from a

SetDB of size 0, we get back the same 0-sized SetDB we started with. As in a mathematical

induction proof, the base case is generally easy to establish.

and

The two inductive step equations in the SetDB example are:

Find(Insert(s, e), e') ==

if e=e' then true else Find(s, e');

Delete(Insert(s, e), e') ==

if e=e'

then Delete(s, e')

else Insert(Delete(s, e'), e);

These equations specify what the selectors do with a SetDB of size n+l. The derivation of n+l

comes from an assumption about the set s that is the first argument to Insert, Find, and Delete.

The assumption is that s contains n elements. Hence, the constructed object Insert(s, e) contains

n+ 1 elements -- the n elements assumed to be in s plus the one new element e that is inserted.

Both of the inductive-step equations use a recursive style of definition. This is very com-

mon in inductive-step equations. The recursion always involves some form of conditional, typi-

cally an if-then-else. The test of the condition checks the n+ 1 case, then the recursion handles

the other n cases. Consider again the case for Find:

Find(Insert(s, e), e') ==

if e=e' then true else Find(s, e');

To paraphrase this equation in English, the LHS says "consider what the Find selector does with

a SetDB of size n+l". The RHS then says, "if the last item that was inserted is the item we're

trying to find, then we've found it so return true; otherwise, the item we're looking for, if

present, must be one of the n items in the SetDB s, so we recursively apply Find to look for it."
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By far the most difficult equation in the SetDB example is the last one that defines the

inductive step for Delete. The equation is not necessarily intuitive in terms of exactly how it

defines set-like behavior. An important technique to determine if a set of equations does what

we want is to formally test the equations. To gain an understanding of how the last equation

works, we will apply this testing technique shortly. Before doing so, we examine some addi-

tional equational definitions.

8.2. Some Additional Equational Definitions

The SetDB example defined equations for the database property that duplicate entries are

not allowed. Given below are additional equational definitions that specify other database stluc-

tural properties. These are all properties that are considered appropriate to be known by an end
user.

8.2.1. A Bag-Like Object

Suppose the desired definition of database is one that does allow duplicate entries, that is, it

behaves like a mathematical bag instead of a set. To obtain the definition of a bag from that of a

set, only one change is necessary -- the then clause of the last SetDB equation is changed from

then Delete(s, e') (* for a set *)

to

then s (* for a bag *)

The upcoming section on testing equations will discuss why this change does what is claimed.

8.2.2. A LIFO-Structured Database

Suppose we choose to define a database with a LIFO (Last-In, First-Out) structure, that is, a
database that behaves like a stack. A stack is much simpler than a set since no recursive search-

ing is necessary for the selector operation. For a stack, the selector is the Top operation. Here is

the equational definition:

object StackDB is

components : Elem* ;

operations:

Push: (StackDB, Elem) -> (StackDB), (* constructor operation *)

Pop: (StackDB) -> (StackDB), (* destructor operation *)

Top: (StackDB) -> (Elem), (* selector operation *)

EmptyStackDB: () -> (StackDB); (* initializer operation *)

equations:

var s: StackDB; e: Elem;

Top(EmptyStackDB()) == EmptyElem() ;

Top(Push(s, e)) == e;

Pop(EmptyStackDB) == EmptyStackDB();

Pop(Push(s, e)) == s;

end StackDB;
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8.2.3. A FIFO-Structured Database

Next we consider the definition of a DB with a FIFO (First-ha, First-Out) property, that is,

the definition of a queue-like DB. This definition is intermediate in terms of complexity
between a SetDB and a StackDB.

object QueueDB

components: Elem*; --

operations:

Enq: (QueueDB, Elem) -> (QueueDB),

Deq: (QueueDB) -> (QueueDB),

Front: (QueueDB) -> (Elem),

EmptyQueueDB: () -> (QueueDB);

(* constructor operation *)

(* destructor operation *)

(* selector operation *)

(* initializer operation *)

equations:

var q: QueueDB; e:Elem;

Front(EmptyQueueDB()) == EmtpyElem();

Front(Enq(q, e)) ==

if q = EmptyQueueDB()

then EmptyQueueDB()

else Front(q);

Deq(EmptyQueueDB) == EmptyQueueDB();

Deq(Enq(q, e)) ==

if q = EmptyQueueDB

then EmptyQueueDB

else Enq(Deq(q), e);

end QueueDB;

8.2.4. A Keyed Database

Finally, we consider the definition of a keyed database, in which duplicates axe not allowed.
The difference between this and SetDB is a more realistic version of the Find operation. No real

database would have Find return a boolean. Rather, Find should return a whole element, which

would be located by some Key. The following specification defines this form of database. The

equations have the same fundamental structure as SetDB, but with the addition of a Key argu-

ment where appropriate.

object DB is

components : Elem* ;

operations:

Insert: (DB, Key, Elem) -> DB;

Delete: (DB, Key) -> (DB);

Find: (DB, Key) -> (Elem);

EmptyDB: () -> (DB);

(* constructor operation *)

(* destructor operation *)

(* selector operation *)

(* initializer operation *)

equations:

var d: DB; e: Elem; k,k': Key;

Find(EmptyDB, k) == EmptyElem();

Find(Insert(d, e, k), k') ==

if k=k' then e else _nd(d, k');

Delete(EmptyDB, k) == EmptyDB;

Delete(Insert(d, e, k), k') ==

if k=k'
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end DB;

then Delete(d, k')

else Insert(Delete(d, k'), k, e);

8.3. Testing Equational Specifications

The first step in testing an equational specification is to understand precisely how equation-

ally defined objects are represented. Since an equationally-defined object has no concrete

representation, we have no real way to "get our hands on it." We cannot draw a picture of an

object that has no concrete representation. The only means to represent such an object is by

using its constructor operations.

Consider the representation of SetDB objects. To build a SetDB, the component type Elem

must be defined. Assume for simplicity object Elem is defined as a number. Given this, a

SetDB object will contain numeric values. As a concrete example, the SetDB containing ele-

ments l, 2, and 3 is represented as a functional expression containing three applications of the
Insert constructor:

Insert(Insert(Insert(EmtpyDB(), I), 2), 3)

In general, any equationally-defined object can be represented as a sequence of constructor

operations, applied at the base to an initializer operation.

When a selector operation is applied to a constructed object, the constructed object simply

appears as an argument in the appropriate selector argument position. For example, to delete the

element 2 for the above set, the Delete operation is applied as follows:

Delete(Insert(Insert(Insert(EmtpyDB(), i), 2), 3), 2)

Functional expressions such as this are commonly called "terms". A term is any number of

equationally-defined operations, applied properly according to their signature definitions.

The general method to test a set of equations is to consider the equations as reduction rules

and apply these rules to a constructed object. In general, a reduction rule is of the form

LHS _ RHS

where the "---/' symbol is read "reduces to". To treat an equation as a rewrite rule, the "==" is

simply replaced by a "--_". We do not actually change the "==", but rather we view the equation

as a rewrite rule, as if the "==" were "--_".

A reduction rule is said to be applied to some subject. In the case of an equational rewrite

rule, the subject is a term. Rewrite rule application involves matching the LHS of the rule to

some part of the term, and then replacing the matched term with the RHS of the rule. This

replacement of the matched LHS with a RHS is the actual rewriting process.

The goal of equational term reduction is to remove all selector operations from a term,

leaving only constructors. This goal makes sense when we consider the form of the equations.

Recall that equations are written in terms of what a selector does to a constructor, not the other

way around. The reason that we do not define equations for what constructors do is that they

need not be reduced. In other words, a term containing only constructors is considered fully

reduced. In this way, an actual object is represented fundamentally by a series of constructor

operations. Whenever a selector is applied to a constructed object, the selector is "reduced out"

to produce a term that again only contains constructors.

Consider the reduction of the Delete term just above:

Delete(Insert(Insert(Insert(EmtpyDB(), i), 2), 3), 2)
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The goal of the reduction is the following object

(Insert(Insert(EmtpyDB(), i), 3)

which represents a SetDB containing a 1 and 3 -- the 2 has been deleted as expected. This goal

was reached by a series of rule applications that matched an equation LHS to some part of the

term, and then replaced the matched LHS with the RHS of the equation. Let us trace through the

reduction steps for the above term. We first start with the subject t_rm:

Delete(Insert(Insert(Insert(EmtpyDB(), i), 2), 3), 2)

To find a match, we consult the SetDB equations, looking for a LHS match. The process we

apply is pattern matching. That is, we consider the LHS of each equation to be a pattern that we

attempt to match to some part of the term. The matching technique attempts to match each

operation name in a LHS with the same name in the term. The variables in the LHS are matched

to components in the term of the appropriate type.

Consider how the match is attempted on the above term with each of the four SetDB equa-

tions. The LHSs of the first two equations contain a Find operation. These two equations can be

eliminated from consideration immediately, since there is no occurrence of Find anywhere in the

subject term (i.e., there are only Delete, Insert, and EmptyDB). The LHS of the last two SetDB
equations are possible candidates for a match, since they start with Delete. The third equation

cannot match however, since there is no pattern in the subject term that will match.

Delete (EmptyDB () .... )

This is because the only occurrence of Delete in the subject term is applied to Insert, not Emp-

tyDB, and the operation names "Insert" and "EmptyDB" do not match.

We are left with the fourth SetDB equation. This equation does in fact match, as follows:

LHS Subterm Matched Subject Subterm

Delete Delete

Insert outermost application of Insert

s Insert(Insert(EmptyDB(), i), 2)

e 3

e' 2

where a subterm is some part of a term. Given this matching, the rule can now be applied, i.e.,

reduced. The reduction involves systematic substitution of the matched LHS with the appropri-

ate subterms of the RHS of equation 4. The RHS of equation 4 is the following:

if e=e'

then Delete(s, e')

else Insert(Delete(s, e'), e);

When the RHS of an equation contains an if-then-else, the replacement will be selected from

either the then clause or the else clause. This requires the the evaluation of the if predicate. In

this case, the if predicate is

e = e'

Based on the above subterm matches, this predicate evaluates to

3=2

which is false. Hence, the RHS replacement is the term given in the else clause of the if-then-

else, which is

Insert(Delete(s, e'), e);
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That is, we must substitute this term for the matched LHS. Doing this, the first step of the

overall reduction process yields the following results:

Delete(Insert(Insert(Insert(EmptyDB, i), 2), 3), 2) =>

Insert(Delete(Insert(Insert(EmptyDB, i), 2), 2), 3)

Notice what has happened here: the Delete has been moved inward in the term passed the Insert.
Also, the 2 has been moved inward passed the 3. This sort of m_nipulation is the gist of what

term writing accomplishes. Namely, the term is rewritten by (re)moving pieces according to the

equations.
Since the term above still contains a selector operation, it is not yet fully reduced. We

therefore apply the same matching process as was used for the first reduction step. As in that

case, the first two equations are eliminated immediately as possible matches. The LHS of the

third equation also fails to match as before. We again match the fourth equation, this time as
follows:

LHS Subterm

Delete

Insert

s

e

e'

Matched Subject Subterm

Delete

2ndto _eoutermostapphcafionof Insert

Insert(Insert(EmptyDB(), i), 2)

2

2

The difference in this case is that the evaluation of the if predicate in the RHS of equation 4 is

now

2=2

which evaluates to true this time. Hence, now instead of the else clause, we substitute the then

clause, which is:

then Delete(s, e')

Doing this, the second step of the reduction process yields the following results:

Insert(Oelete(Insert(Insert(EmptyDB, i), 2), I), 2) =>

Insert(Delete(Insert(EmptyDB(), i), 2), 3)

The resulting term is not yet fully reduced, since it still contains the Delete selector. Two addi-

tional reduction steps will occur to arrive at complete reduction. The next step will match equa-

tion 4 again, as in the preceding two steps. On this match, the if predicate, e=e', will test

1 = 2

which is false, thereby causing substitution of the else clause. Doing this, the third step of the

reduction yields:

Insert(Delete(Insert(EmptyDB(), i), 2), 3) =>

Insert(Insert(Delete(EmptyDB() , i) , 2) , 3)

The final step of the reduction uses SetDB equation 3. This is because the pattern matching finds

"... Delete(EmptyDB0 ..." in the term, which matches the LHS of equation 3. Given this, the

final step of the reduction is

Insert(Insert(Delete(EmptyDB(), i), 2), 3) =>

Insert(Insert(EmptyDB(), i), 3)

In addition to testing that SetDB equations are correct, the above reduction sequence reveals pre-

cisely how the SetDB equations work. It should now be clear why equation 4 of SetDB is writ-

ten as it is. Namely, it is up to the Delete equation to make sure that the set property is
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maintained. Any number of Insert operations can be applied to a SetDB term, including Insert's

of the same element. While this temporarily violates the set property, the Delete equation makes

sure that set behavior is maintained by deleting all of the same elements that may have been

inserted. While this may seem to be an inefficient manner in which to maintain the set property,

we do not care about efficiency at all, only that the desired property is properly maintained.

8.4. Predicative Specification

Predicative specification is a complementary form of specification to equational. In the

predicative approach, preconditions and postconditions are associated with an operation. The

precondition specifies a predicate that must be true before the operation begins. The postcondi-

tion specifies a predicate that must be true after the operation completes.

Consider an alternate definition of a set-like database:

object SetDB is

components : Elem* ;

operations: Insert, Delete, Find, EmptyDB;

(* Note that we do not need full operation signatures, nor

* equations, since we are now specifying with pre and post-

* conditions in place of the equations we used above.

*)

end SetDB;

operation Insert is

inputs: d:SetDB, e:Elem;

outputs: d' :SetDB;

precondition: Find(d, e) = false;

(* An equivalent precondition is: not (s in e);

* see discussion below. *)

postcondition: Find(d, e) = true;

(* An equivalent precondition is: s in e;

* see discussion below. *)

end Insert;

operation Find is

inputs: d:SetDB, e:Elem;

outputs: b:boolean;

precondition: (* An empty precond means true *

postcondition: b = e in d;

end Find;

operation Delete is

inputs: d:SetDB, e:Elem;

outputs: d' :SetDB;

precondition: e in d;

(* See discussion below about removing this precond.

postcondition: not Find(d,e);

end Delete;

*)

operation EmptyDB is

inputs: ;

outputs: d:SetDB;

precondition: ;
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postcondition: forall (e:Elem) not Find(d,e);

(* See discussion below about removing this precond. *)

end EmptyDB ;

It is instructive to compare and contrast this predicative definition of SetDB with the equational

definition given in the preceding section. Both definitions specify the same meaning in different

forms. The following are some important points about specification with pre and post conditions

in particular.

By definition, violation of a precondition is an error. Abstractly this means simply that the

operation fails and no postcondition happens. Concretely (i.e., in the user's manual), this means
that the end-user should see some form of appropriate error message.

A specification can be weakened or strengthened by the selective removal or addition of pre

and/or post conditions. E.g.,

op Delete is

in: d:DB, e:Elem;

out: d':DB;

precond: Find(d, e) = true;

postcond: Find(d', e) = false;

end Delete;

is relatively weaker than

op Delete is

in: d:DB, e:Elem;

out: d' :DB;

postcond: Find(d', e) = false;

end Delete;

in that the latter specification says that it is an error to try to delete an element that is not already

in the database, whereas the former is non-committal.

8.4.1. Quantification

In equational specification, recursion is used to specify a single equation that can be applied

in an indefinite (potentially infinite) number of cases. That is, a recursive equation can be appli-

cable to objects from size 1 to an infinite size. The predicative style of specification uses

quantification to define predicates that apply to objects of an indefinite size.

Consider the following basic example of universal quantification:

operation FindAllYoungFolks is

inputs: pdb: PersonDatabase;

outputs: nl: NameList;

postcondition :

forall (p: PersonRecord)

if (p in pdb) and (p.a < 40)

then p.n in nl;

description: (*

FindAllYoungFolks produces a list of the names of all

persons in the PersonDatabase whose age is less than 40

*);

end FindAllYoungFolks;

object PersonDatabase is

components: PersonRecord*;

description: (* Same as earlier

end PersonDatabase;

de_nitions. *)
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object PersonRecordis
components: n:Nameand a:Age and ad:Address;
description: (* Sameas earlier definitions.

end PersonRecord;
*)

object NameList is

components: Name*; --

end NameList;

The pos_ondifion of the FindAHYoungFolks operation uses forall to quantify over the input

PersonDambase. An English paraphrase of _e postcondition is as follows: " For each Person-

Record, p, in the input, if the age of person p is less than 40, then the name of person p is in the

output name _st". This form of quantification is very typical of pos_onditions on operations

that produce list-s_uctured o_ects as outputs.

The foUowing o_ec_ and operations further exemplify the use of universal and exis_nti_

quantification in RSL. Consider an operation that merges set-like databases, of the type

specified earlier:

operation MergeDBs

inputs: dl:SetDB, d2:SetDB;

outputs: d3:SetDB;

postcondition:

forall (e: Elem)

if (e in dl) or (e in d2)

then e in d3;

description: (*

The MergeDBs operation merges two databases of the same type

of element. The postcondition states that the result of the

merge is that any element that is in either input dl or d2

must be in the output d3.

*)
end MergeDBs;

There is no precondition needed. The pos_ondition sm_s _at if an element is in either of _e

input DBs, then it is in the output DB. An in,resting question is the s_ength of _is pos_ondi-

tion. In particular, does it guaran_e th_ there are no duplicates in the output d3? Since the "in"

operator is not constructive, based on this postcondifion _one there is no way to state for certain

whether d3 has duplicates or not. That is, this pos_ondition is too weak to guaran_e no dupli-
ca_s. Thus, we must look elsewhere.

The "elsewhere" we look is in the specification of the o_er DB operations. Specific_ly,

the specifications for SetDB Find and Dele_ are:

operation Find is

inputs: d:SetDB, e:Elem;

outputs: b:boolean;

precondition: (* An empty precond means true * ;

postcondition: b = e in d;

end Find;

operation Delete is

inputs: d:SetDB, e:Elem;

outputs: d' :SetDB;

precondition: e in d;

(* See discussion below about removing this precond.

postcondition: not Find(d,e);

end Delete;

*)
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What Find ensures is that if at least one copy of an element is in a SetDB, then it can be found.

What Delete ensures, is if there are one or more copies of an element in a SetDB, then after the

Delete none can be found. Therefore, whether duplicates are ever physically present in a SetDB

is immaterial. The specifications of Find and Delete uphold the critical set property that if an
element has been added at least once, then it can be found, and if it is deleted, it cannot be found.

Hence, even if MergeDBs does add duplicates, Find and Delete will maintain the set property

when subsequently invoked.

Consider another form of database merge:

object PairedDB is

components: ElemPair*;

end PairedDB ;

object ElemPair is

components: el:Elem and e2:Elem;

description: (* An ElemPair is just a pair of elements.

end ElemPair;

.)

operation PairwiseMergeDBs

inputs: dI:DB, d2:DB;

outputs: dp: PairedDB

precond: #d

postcondition:

forall (el,e2: Elem)

if (el in dl) and (e2 in d2)

then

exists (ep: ElemPair) (ep in dp) and

(ep.el = el) and (ep.e2 = e2)

description: (*

PairwiseMergeDBs merges two databases of the same type of

element into a paired database. The precondition states

that the two input DBs must have the same number of

elements. The postcondition states that the resulting

output, dp, must consist of pairs of all the elements that

are the two input databases.

)*
end PairwiseMergeDBs

It is important to note that universal quantification does not deliver elemeng in any specOc
order. Given this, the pos_ondifion for the Pa_wiseMergeDBs example may be weaker than it

appears at first reading. Namely, it specifies that dp contains all possible pairs of elements from

d l and d2, where the paked elemen_ were selecmd from the databases m no guaranmed order.

Suppose, for example, that dl = [rl, r2, r3], and d2 = [r4, r5, r6]. Then the pos_ondition

specifies that the output dp = [ [rl,r4], [rl,5], [rlx6], [r2,r4], [r2,r5], [r2¢6], [r3,r4], [r3,r5],

[r3,r6] ], where the order of the pairs in dp is not specified.

Suppose that only ordered paks were desked, such th_ each pak contains the ith element

from each of the inputs• This could be specified in a number of ways, including as follows:

operation PairwiseMergeDBs

postcondition:

forall (el,e2: Elem)

if (el in dl) and (e2 in d2)

then

exists (ep: ElemPair) ((ep in dp) aad

46



PositionOf(ep.el, dl ) = PositionOflep.e2, d2))

°°°

end PairwiseMergeDBs

where PositionOf is the following auxiliary function that outputs the ordinal position of an Elem

within a DB:

function PositionOf(e:Elem, d:DB) : (n:number) = -

if d = nil

then 0

else if e = d[l]

then 1

else PositionOf(e, d[2:#d]) + i;

8.4.2. Combining Predicative and Equational Specification

The following example shows how a sorted, keyed database can be defined using a combi-

nation of equational and predicative specification:

object Elem is

components: k: Key, ElemValue;

description: (*

A DB element with an internal key.

*)
end Elem;

object Key is string;

object SKDB is

components: Elem*;

operations:

Insert: (SKDB, Elem) -> (SKDB),

Delete: (SKDB, Key) -> (SKDB),

Find: (SKDB, Key) -> (Elem),

EmptySKDB: () -> (SKDB),

FindNth: (SKDB, number) -> (Elem),

SortDB: (SKDB, Key) -> (SKDB);

equations:

var d: SKDB; e:Elem; i:number;

Find(EmptyDB, k) == EmptyElem();

Find(Insert(d, e), k') ==

if e.k=k' then e else find(d, k');

Delete(EmptyDB, k) == EmptyDB;

Delete(Insert(d, k), k') ==

if k=k'

then Delete(d, k')

else Insert(Delete(d, k'), k, e);

FindNth(Insert(d,e), i) ==
if i = 1 then e

else FindNth(d,i-l);

end SKDB;

operation SortDB is

inputs: d:SKDB, k:Key;

outputs: d':SKDB;

precond:

postcond: forall (i,j:number)

if i<j then FindNth(d',i).k < FindNth(d',j).k;
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description: (* Sort a database *)

end SortDB;

operation FindNth is

inputs:d:SKDB, n:number;

outputs: e:Elem;

description: (* Find the DB element at position n. *)

end FindNth;

Of particular note in this example is the universal quantifier in the SortDB postcondition. An

Engfish paraphrase of this postcondifion is as follows: "For all pa_s of numbers i and j, if i is

less than j then the key at position i is less than the key at position j, where the key at position n

is delivered by the FindNth operation."

8.4.3. More on Auxiliary Functions

A negative critique of keyed database specification is that FindNth might best be left invisi-

ble to end-users. That is, there may be no reason that users need to find the nth element in a DB.

Rather, users simply need the DB sorted and to be able to find elements by key. Even if this is

the case, we still need FindNth in order to fully specify the definition of SortDB.

It was noted earlier that specification is a battle between saying too little and saying too
much. In the case of FindNth, the battle has been lost if FindNth is not a necessary user-level

operation, since FindNth is still a necessary specification-level function. In the example above,

FindNth was specified equationally as a visible operation. The alternate definition as an auxili-

ary function is the following:

function FindNth(d:SKDB, n:number) : (e:Elem) = d[n] ;

In some cases, it may turn out that what at first appears to be an auxiliary function is in fact

a legitimate user-level operation. When this happens, the process of formalizing a specification

has helped uncover an incompleteness originally present before the formal definition was con-

sidered. In other cases, auxiliary functions should best be left invisible to the user, in which case

they remain genuinely auxiliary. In all cases, specifiers must consider carefully when auxiliary

functions are necessary.

A noteworthy property of auxiliary functions is that their definitions are constructive. That

is, the body of the function constructs an actual value that the function outputs. Such construc-

tive definitions are in contrast to operations that are defined solely in terms of pre- and post-

conditions. A postcondition does not construct a value, but rather states a property that an
assumed constructed value must meet.

The astute reader will notice that with the introduction of constructive functions, RSL has

the expressive power of a functional programming language, such as LISP or ML. Hence, using
constructive functions, it is possible for specifications to become very much like programs. This

is clearly not the intent. Specifiers should always be mindful that the fundamental goal of

specification is to define what a system does, not how it works. Auxiliary functions should be

used judiciously, so that RSL specifications remain free of unnecessary program-level detail.

9. Execution

The RSL language defined in the preceding sections is not executable. Operations are

specified strictly in terms of conditions that must be true upon entry and exit. Objects are
specified by equational relationships between operations, not by operations that manipulate data
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structures.

In writing a sp_ification, it is often convenient to provide prototype implementations for

some of the specified operations. This allows experimentation with implementation alternatives,

and testing of concrete ideas.

There are a number of possibilities for rendering a specification executable. One successful

technique is employed in the OBJ3 language [Goguen 88]. The OBJ3 approach to execution is

to interpret an equational specification using term rewriting. The concept of term rewriting was
introduced in Section 8.3 above. Execution in OBJ3 uses the same basic rewriting technique as

described there. The advantage of equational interpretation is that the specification can be exe-

cuted directly, with no additional definitions required specifically for execution. A significant

disadvantage of equational execution is inefficiency, since term rewriting is quite slow when

implemented via software interpretation. Another disadvantage is that only the equational form

of the specification is executable, since predicative specifications cannot be interpreted using the

same form of rewriting that is used for equations.

Another approach to executable specification is employed in the FASE specification

language. In FASE, an interpreter for predicative specification has been developed. The FASE

approach to execution has the same advantage as the OBJ3 approach. Viz., the FASE

specification is directly executable. A disadvantage of the FASE system is that not all forms of

quantification can be executed, most particularly existential. In addition, some forms of univer-

sal quantification lead to quite inefficient execution.

A simpler approach to execution is taken for RSL. Rather than employing sophisticated

interpretation of equational or predicative specification, RSL allows the specifier to use a subset

of the RSL expression language to specify executable bodies for operations. The executable

subset of RSL is comparable to functional programming languages, such as pure Lisp and ML.

In terms of expressive power, executable RSL is closer to Lisp than to ML, since the RSL inter-

preter does not perform type inference.

9.1. Implementation Modules

To provide an executable body for one or more operations, the RSL specifier adds an imple-

mentation module to a specification. Each implementation module must correspond by name to

an existing specification module. Consider the following example:

implmentation module PersonDatabase ;

operation AddRecord (pdb:

let pdb' = pdb + pr;

end AddRecord;

PersonDatabase, pr: PersonRecord)

: pdb': PersonDatabase;

operation DeleteRecord (pdb: PersonDatabase, pr: PersonRecord)

: pdb': PersonDatabase;

let pdb' = pdb - pr;

end DeleteRecord;

operation FindRecord (pdb: PersonDatabase, pr: PersonRecord, n: Name)

: pr: PersonRecord;

forall (prl in pdb) (

if (prl.Name = n) then let pr = prl;

)
end FindRecord;
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operation CreateDatabase()

let pdb = [];

end CreateDatabase;

: pdb: PersonDatabase;

end PersonDatabase;

This is a companion implementation for the PersonDatabase example presented earlier in Sec-

tions 3.1 and 3.2. The body of each operation defines how to compute a value for the operation

outputs. Syntactic and semantic details of executable expressions follow.

9.2. Executable Expressions

The foundation of executable expressions is identical to the expressions defined in Sections

7.1 through 7.4 of the manual. These sections define the following:

• variables

• functional, arithmetic, and boolean expressions

• list operations

• composite object selector operations

Added to this foundation are three additional forms of executable expression:

• the let expression

• executable forall

• expression sequencing

The let expression has the following format:

let object-selector = executable expression

where object-selector is a variable or an object selector expression as defined in Section 7.4.

The let expression binds a value to a variable or to the selected component of a variable.

Executable forall has the following format:

forall (x in list) expression-sequence

The meaning of executable forall is as follows. The expression-sequence will be executed zero
or more times, based on the number of elements of in list. Before the ith execution, the expres-

sion "let x = list[i] is executed. That is, the value of x is set successively to each element in list,

and the expression-sequence is successively executed. Note that there is a significant semantic

difference between executable forall versus the logical forall used in a predicate. As noted in

Section 8.4.1, the logical forall does not deliver elements in any guaranteed order. In contrast,
executable forall does deliver elements in order, such that the ith execution works on the ith ele-

ment of the list.

An expression sequence is simply a sequence of executable expressions separated by semi-

colons. The sequence is executed in order.

Executable object values are defined using the syntax of concrete objects, defined in Sec-

tion 3.7. For example, the following is a typical executable expression sequence:

let s = [i,2,3];

let s[l] = I0;

let s[2:3] = [20, 30, 40, 50];

50



For this to be a legal sequence, the type of variable s must be number*. The result of this

sequence is a value of [10, 20, 30, 40, 50] for s.

Executable expressions are put to use within the bodies of executable operations. The

definition of an executable operation has the following general form, similar to an auxiliary
function:

operation name (list of inputs) : (list of outputs); -

vat varname:object_name, ... ;

executable-expression-sequence ;
end name

The variable declarations within the operation define local variables that may be used within the

executable expressions that follow the declarations. The body of the function must contain at

least one let expression for each of the operation outputs. These let expressions define the output

values that are computed by the operation.

10. Concluding Remarks

This manual has described a general-purpose requirements specification language. The

language is suitable for specifying requirements and external functionality of a computer-based

system. The language can be used for the software and/or hardware components of a system.

Development of the language is ongoing. Enhancements scheduled for future release

include the following:

• Fully formal definition of RSL via mapping to an existing formal specification

language, such as EHDM [Rushby 91] or HOL [Gordon 85].

• Execution via term-rewriting of equational specifications, as provided in OBJ

[Goguen 88].

• Support for the formal specification of graphical user interfaces, as described in

[Fisher 91].
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Appendix A: Summary of Entity DefinitionForms

The examples inthe body of the manual show how objectsand operationscan be definedin

a number offorms. This Appendix summarizes each of thedefinitionalforms.

A.I Object Definition Forms

The most complete form of object definition is the following:

object name is

[components: ...,]

[operations: ...,]

[equations: ..4]

[description: ...;]

[<user-defined attributes>; ... ;]
end <name>

where the square brackets denote optional terms. This long-form specifies a composite type if

the components attribute is non-empty, or an opaque type if the components attribute is missing

or defined as empty.

The following is a shorter definition form used to specify atomic types:

object name is name [

[operations: ...;]

[equations: ...;]

[description: ..4]

[<user-defined attributes>; ... ;]

end <name>]

Notice in this shorter form that the components attribute is missing. The other attributes remain

optional in the short form.

Replacing the keyword is with '=' defines a concrete value rather than an abstract type.

The general format for a concrete object definition is as follows:

object name = expression [

[description: ...;]

[<user-defined attributes>; ... ;1

end <name>]

Notice that components, operations, and equations attributes are all missing in a concrete value
definition. Formally, it is inappropriate to include these attributes for a concrete value, so their

inclusion is disallowed syntactically.

The simplest form of object specification is a fully opaque type, defined as:

object name ;

A.2 Operation and Function Definition Forms

The general forms for operation definition are analogous to the object forms. The long-

form operation definition is the following:

operation name is

[components: ...;]

[inputs: ...;]
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[outputs: ..4]

[preconditions: ...;]

[postconditions: ...;]
[description: ...;]

[<user-defined attributes>; ... ;]

end <name>

This form defines a user-visible operation with optional attributes. A non-user-visible auxiliary

function can be defined in two forms, the first of which is:

function name is

[inputs: ...;]

[outputs: ...;]

[preconditions: ...;]

[postconditions: ...,]

[description: ...;]

[<user-defined attributes>; ... ;]
end <name>

This form defines a non-constructive auxiliary function. The formal specification of such func-

tions is given with pre/postconditions or equationally.

The final function definition form is:

function name = (inputs ) :(outputs ) = ep xr

[preconditions: ...;]

[postconditions: ..4]

[description: ...;]

[<user-defined attributes>; ... ;]

end <name>

This form defines a constructive auxiliary function, where the given expression defines the con-

crete value computed by the function. Notice that a constructive function may optionally

include pre/postconditions so that a both constructive and predicative definition can be supplied

if desired. The two definitions can provide complementary but equivalent specifications.
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Appendix B: Keyword Synonyms

To provide flexibility in the textual style of an RSL specification, most keywords have
abbreviated forms that are synonymous with the longer forms of the keyword. The following

table summarizes all keyword synonyms:

Full Keyword Synonymous Abbreviations

and

axiom

collection

components
exists

function

iff

implies

inputs

object
operation

operations

outputs

postconditions

preconditions
variable

ax

list, list of, '*' (as a postfix operator)

parts
exist, there exist, there exists

func

'<=>'

in

obj
op

ops

out

postcond, post

precon, pre
var
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Appendix C: Functional Definition of Relational Attributes

Formally, relational attributes can be viewed as "syntactic sugaring" for a functional

definition of formal relations. RSL users who prefer to limit the number of constructs used in a

specification may prefer not to use relational attributes.

In general, the relation between two objects is represented as a function (or operation) with

an appropriate signature. Consider the following bi-directional relation:

define object attribute R;

object Ol is

R: 02;

end Ol ;

object 02 is

R: Ol

end 02

The functional representation is as follows:

object Ol is

end Ol ;

object 02 is

end 02 ;

function OI_R_O2(OI) : (02) ;

function 02 R O1(O2) : (O1) ;

Multi-valued relations, such as

object 03 is

R: O1,O2;

end 03 ;

are represented as multi-valued functions or multiple, suitably-named, single-valued functions.

The functional representation is clearly bulkier than the attribute-based representation, since in
the former, one function needs to be defined for each separate reference to a single relation•

An additional consideration regarding relational definitions concerns the future enhance-

ment of the RSL development environment. A near-term goal is to provide a formal verification

environment for RSL, so that properties of a specification can be mechanically verified. The

most effective means to provide such verification is to translate RSL into an existing formal

language for which mechanized verification support already exists. Candidates for the target of
translation include EHDM [Rushby 91] and HOL [Gordon 87]). These and similar systems do

not provide direct verification support for relational definitions. Therefore, translation of rela-
tions into functional form will be necessary if mechanized verification support is to be provided

for RSL in the foreseeable future.
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Appendix D: Complete RSL Syntax

top_level_def:

spec_unit

I
entity_spec

I
attr_def

spec_unit:

module_heading entity_spec_list ';' 'end' spec_name_ender ';' I

module_heading attr_defs ';' entity_spec_list ';' 'end' spec_name_ender

';'1

module_heading 'end' spec_name_ender ';' I

module_heading attr_defs ';' 'end' spec_name_ender ';' I

entity_spec ';'

module_heading:

'module' spec_name ';' I

'module' spec_name ';' imports I

'module' spec_name ';' exports I

'module' spec_name ';' imports exports

imports:

import I

import imports

import:

'from' name 'import' ident_list ';'

'import' ident_list ';'

exports:
export I

export exports

export:
'export' 'qualified' identlist ';'

'export' ident_list ';'

entity_spec_list:

entity_spec I

entity_spec_list ';' entity_spec

entity_spec:

object_spec I

operation_spec I
formal_decl
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object_spec:
obj_heading'is' obj_body'end' obj_name_enderI
obj_headinginstance'is' obj_body'end' obj_name_enderI
obj_symbolname_type_pair'=' obj_exprI
obj_symbolname_type_pair'=' obj_exprobj_attributes'end' obj_name_enderI
obj_heading'is' obj_nameI
obj_symbolobj_name

obj_heading:
obj_symbol obj_name I

obj_symbol class obj_name

operation_spec:
op_heading 'is' op_body 'end' op_name_ender I

op_heading instance 'is' op_body 'end' op_name ender I

op_symbol op_name '(' name_type_list ')' ':' '(' name_type_list ')' '='

exprl

op_symbol op_name '(' name_type_list ')' ':' '(' name_type_list ')' '='

expr precond postcond op_attributes "end' op_name_ender

op_heading:

op_symbol op_name I

op_symbol class op_name

class:

'class'

instance:

'instance' 'of' class_name_list

obj_body:
parts ops eqns obj_attributes [

name ops eqns obj_attributes I

parts ops eqns [

name ops eqns

op_body:

parts inputs outputs precond postcond op_attributes

parts:
/* empty */ I

parts_spec or_op parts_spec I

prefix_list_op parts_spec [

parts_spec postfix_list_op I

name_type_pair I

name ':' '(' parts_spec ')' I

'(' parts_spec ')'
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and_op:

'and' I

op_name ':' op_parms

op_parms:
'(' sig_args_list ')' '->' '(' sig_args_list ')'

name_type_list:

/* empty */ [

prefix_list_op ins_parts_spec I

ins_parts_spec postfix_list_op I

init_name_type_pair

obj_attributes:

obj_attribute I

obj_attributes ';' obj_attribute

obj_attribute:
attr_name ':' 'text'

attr_name:

name

op_attributes:

/* empty */ I

obj_attributes

name_type_pair:

name [

name ' :" obj_name

name_obj_pair:

name [

name ' :' obj_name

init_name_type_pair:

name_type_pair I

name_type_pair "'.=' obj_expr

spec_name:
name

spec_name_ender:

/* empty */ I
name

class_name_list:
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class_nameI
class_name_list',' class_name

class_name:
name

obj_name:
name

obj_name_ender:
/* empty */ I
name

op_name:
name

op_name_ender:

/* empty */ I
name

formal_decl:

var_symbol var_decls ';' I
function_decl ';'l

ax_symbol ax_decls ';'

var_decls:

var_decl I
var_decls ';' var_decl

var_decl:
var_name_list ':' obj_name

function_decl:

function_heading '(' name_type_list ')' ':' '(' name_type_list ")'

'=' expr I

function_heading '(' name_type_list ')' ':' '(' name_type_list ')'

'=' expr precond postcond op_attributes 'end' op_name_ender I

function_heading '(' name_type_list ')' ':' '(' name_type_list ')' I

function_heading '(' name_type_list ')' ':' '(" name_type_list ')'

'is' precond postcond op_attributes 'end' op_name_ender

function_heading:

'function' op_name

'func' op_name

precond:
/* empty */ I

60



pre_symbol':" ';'1
pre_symbol':' expr ';' [
pre_symbolerror ';'

postcond:
/* empty */ [

post_symbol ':' ';'[

postsymbol ':' expr ';' [

post_symbol error ';'

expr:

expr 'and' expr [

expr 'or' expr [

expr 'implies' expr [

expr 'iff' expr [

'not' expr [

"if' expr 'then' expr ]

'if' expr 'then' expr 'else' expr I

'forall' '(' name_obj_list ')' expr [

exists_symbol '(' name_obj_list ')' expr [

rel_expr

rel_expr:

expr rel_bin_op expr %prec '=' [
arith_expr

arith_expr:

arith_expr arith_add_op arith_expr [

arith_expr arith_mult_op arith_expr I

arith_expr arith exp_op arith_expr [

arith_pre_op arith_expr [

selector_expr I

index_expr I

functional_expr I

obj_expr I

•(' expr')'

selector_expr:

arith_expr select_op arith_expr

index_expr:

arith_expr '[' expr ']' %prec '[' I

arith_expr '[' expr ':' expr ']'

functional_expr:

op_name '(' op_args ')'

%prec ' '
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op_args:
/* empty */ I

op_arg I

op_arg ',' op_args

sig_args_list:
/* emtpy */ I

sig_args

sig_args:

sig_arg I

sig_arg ',' sig_args

op_arg:

expr

sig_arg:

name_type_pair

rel_bin_op:

'<' I

'>' I

'<>' [

'<--' I

'>----' I

'in'

arith_add_op:

'-t-' [

arith_mult_op:

'/'1
'div' I
"rood'

arith_exp_op:
_^_

arith_pre_op:

'-I-' [

,#,

select_op:
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eqns:
/* empty */ I

eqns_symbol ':' eqn_decls ';' I

eqns_symbol ':' { EnterEqnsO; }

var_symbol var_decls ';' eqn_decls ';"

eqns_symbol error ';'

eqn_decls:

eqn_decl I

eqn_decls ';' eqn_decl

eqn_decl:
lhs '==' rhs ;

lhs:

functional_expr

rhs:

expr

ax_decls:

ax_decl I
ax_decls ';' ax_decl

ax_decl:

expr

var_name_list:

var_name i
var_name_list ',' var_name

var_ilame:

name

obj_expr:

obj_atom

I
'[' ']' I
'[' obj_expr_list ']'

obj_expr_list:

obj_expr I

I
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obj_expr_list ',' obj_expr

obj_atom:
"double-quoted string of printable ASCI1 characters" I

"zero or more digits" I

"zero or more digits with optional fraction and exponent"

'nil' [

name

-

name:
"letter followed by zero or more letters or digits"

attr_defs
'define' op_symbol 'attribute' ident_list I
'define' 'attribute' ident_list ;

ident_list:

var_name_list

obj_symbol:

'object' I

'obj'

op_symbol:
'operation' I

'op'

parts_symbol:
'components' I

'parts'

ops_symbol:
'operations' I

'ops'

in_symbol:

'inputs' I
'in'

out_symbol:

'outputs' I
'OUt'

var_symbol:

'variable' I
'vat'
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eqns_symbol:

'equations' [

'eqns'

ax_symbol:

'axiom" I
'ax'

pre_symbol:

'preconditions' I

'precondition' I

'pre'

post_symbol:

'postconditions' I

'postcondition' I

'post'

exists_symbol:

'there' 'exists' I

'there' 'exist' I

'exists' I
'exist'
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